Startseite Mathematik An improved version of the AAG cryptographic protocol
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An improved version of the AAG cryptographic protocol

  • Vitaliĭ Roman’kov EMAIL logo
Veröffentlicht/Copyright: 17. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An improved version of the Anshel–Anshel–Goldfeld (AAG) algebraic cryptographic key-exchange scheme, that is in particular resistant against the Tsaban linear span cryptanalysis, is established. Unlike the original version, that is based on the intractability of the simultaneous conjugacy search problem for the platform group, the proposed version is based on harder simultaneous membership-conjugacy search problems, and the membership problem needs to be solved for a subset of the platform group that can be easily and efficiently built to be very complicated and without any good structure. A number of other hard problems need to be solved first before start solving the simultaneous membership-conjugacy search problem to obtain the exchanged key.

MSC 2010: 94A60

Award Identifier / Grant number: 18-41-550001a

Funding statement: This research was supported by RFBR (project 18-41-550001a).

References

[1] I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett. 6 (1999), no. 3–4, 287–291. 10.4310/MRL.1999.v6.n3.a3Suche in Google Scholar

[2] A. Ben-Zvi, A. Kalka and B. Tsaban, Cryptanalysis via algebraic spans, Advances in Cryptology – CRYPTO 2018. Part 1, Lecture Notes in Comput. Sci. 10991, Springer, Cham (2018), 255–274. 10.1007/978-3-319-96884-1_9Suche in Google Scholar

[3] J. H. Cheon and B. Jun, A polynomial time algorithm for the braid Diffie–Hellman conjugacy problem, Advances in Cryptology—CRYPTO 2003, Lecture Notes in Comput. Sci. 2729, Springer, Berlin (2003), 212–225. 10.1007/978-3-540-45146-4_13Suche in Google Scholar

[4] R. Gilman, A. Myasnikov, A. Myasnikov and A. Ushakov, New developments in commutator key exchange, Proceedings of the First International Conference on Symbolic Computation and Cryptography, Beihang University, Beijing (2008), 146–150. Suche in Google Scholar

[5] J. Hughes and A. Tannenbaum, Length-based attacks for certain group based encryption rewriting systems, Workshop SECI02 Securit‘e de la Communication sur Intenet (Tunis 2002). Suche in Google Scholar

[6] A. Myasnikov and V. Roman’kov, A linear decomposition attack, Groups Complex. Cryptol. 7 (2015), no. 1, 81–94. 10.1515/gcc-2015-0007Suche in Google Scholar

[7] A. Myasnikov, V. Shpilrain and A. Ushakov, Group-based Cryptography, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2008. Suche in Google Scholar

[8] A. Myasnikov, V. Shpilrain and A. Ushakov, Non-commutative Cryptography and Complexity of Group-theoretic Problems, Math. Surveys Monogr. 177, American Mathematical Society, Providence, 2011. 10.1090/surv/177Suche in Google Scholar

[9] A. D. Myasnikov and A. Ushakov, Length based attack and braid groups: Cryptanalysis of Anshel–Anshel–Goldfeld key exchange protocol, Public Key Cryptography—PKC 2007, Lecture Notes in Comput. Sci. 4450, Springer, Berlin (2007), 76–88. 10.1007/978-3-540-71677-8_6Suche in Google Scholar

[10] D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math. 80, Springer, New York, 1982. 10.1007/978-1-4684-0128-8Suche in Google Scholar

[11] V. A. Roman’kov, Introduction to Cryptography (in Russian), Forum, Moscow, 2012. Suche in Google Scholar

[12] V. A. Roman’kov, Algebraic Cryptography (in Russian), Omsk State University, Omsk, 2013. Suche in Google Scholar

[13] V. A. Roman’kov, Cryptanalysis of some schemes applying automorphisms (in Russian), Prikl. Discret. Mat. 3 (2013), 35–51. 10.17223/20710410/21/5Suche in Google Scholar

[14] V. A. Roman’kov, A nonlinear decomposition attack, Groups Complex. Cryptol. 8 (2016), no. 2, 197–207. 10.1515/gcc-2016-0017Suche in Google Scholar

[15] V. A. Roman’kov, Essays in Algebra and Cryptology: Algebraic Cryptanalysis, Omsk State University, Omsk, 2018. Suche in Google Scholar

[16] V. A. Roman’kov, Two general schemes of algebraic cryptography, Groups Complex. Cryptol. 10 (2018), no. 2, 83–98. 10.1515/gcc-2018-0009Suche in Google Scholar

[17] B. Tsaban, The Conjugacy Problem: Cryptoanalytic approaches to a problem of Dehn, Minicourse, Düsseldorf University, 2012, http://reh.␣math.uni-duesseldorf.de/gcgta/slides/Tsaban␣minicourses.pdf. Suche in Google Scholar

[18] B. Tsaban, Polynomial-time solutions of computational problems in noncommutative-algebraic cryptography, J. Cryptology 28 (2015), no. 3, 601–622. 10.1007/s00145-013-9170-9Suche in Google Scholar

Received: 2018-11-17
Published Online: 2019-04-17
Published in Print: 2019-05-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcc-2019-2003/html?lang=de
Button zum nach oben scrollen