Startseite On the covering number of small symmetric groups and some sporadic simple groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the covering number of small symmetric groups and some sporadic simple groups

  • Luise-Charlotte Kappe , Daniela Nikolova-Popova und Eric Swartz ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. Oktober 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A set of proper subgroups is a cover for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G, denoted by σ(G). Determining σ(G) is an open problem for many nonsolvable groups. For symmetric groups Sn, Maróti determined σ(Sn) for odd n with the exception of n=9 and gave estimates for n even. In this paper we determine σ(Sn) for n=8,9,10,12. In addition we find the covering number for the Mathieu group M12 and improve an estimate given by Holmes for the Janko group J1.

Award Identifier / Grant number: DP120101336

Funding statement: The third author acknowledges the support of the Australian Research Council Discovery Grant DP120101336 during his time spent at The University of Western Australia.

Acknowledgements

We are very thankful to Eric Borenstein, the administrator of the High Performance Computing Initiative at Florida Atlantic University, for gaining us access to KoKo and for helping us implement Gurobi on KoKo, which included finding the best parameters for optimal performance. Finally, we would like to thank Gordon Royle for giving us access to his machine at The University of Western Australia.

References

[1] Abdollahi A., Ashraf F. and Shaker S. M., The symmetric group of degree six can be covered by 13 and no fewer proper subgroups, Bull. Malays. Math. Sci. Soc. 30 (2007), 57–58. Suche in Google Scholar

[2] Anderson I., Combinatorics of Finite Sets, Dover Publications, Mineola, 2002. Suche in Google Scholar

[3] Blackburn S., Sets of permutations that generate the symmetric group pairwise, J. Combin. Theory Ser. A 113 (2006), 1572–1581. 10.1016/j.jcta.2006.01.001Suche in Google Scholar

[4] Britnell J. R., Evseev A., Guralnick R. M., Holmes P. E. and Maróti A., Sets of elements that pairwise generate a linear group, J. Combin. Theory Ser. A 115 (2008), 442–465. 10.1016/j.jcta.2007.07.002Suche in Google Scholar

[5] Bruckheimer M., Bryan A. C. and Muir A., Groups which are the union of three subgroups, Amer. Math. Monthly 77 (1970), 52–57. 10.1080/00029890.1970.11992416Suche in Google Scholar

[6] Bryce R. A., Fedri V. and Serena L., Subgroup coverings of some linear groups, Bull. Aust. Math. Soc. 60 (1999), 239–244. 10.1017/S0004972700036364Suche in Google Scholar

[7] Cohn J. H. E., On n-sum groups, Math. Scand. 75 (1994), 44–58. 10.7146/math.scand.a-12501Suche in Google Scholar

[8] Conway J. H., Curtis R. T., Norton S. P., Parker R. A. and Wilson R. A., Atlas of Finite Groups, Oxford University Press, Oxford, 2005. Suche in Google Scholar

[9] Epstein M., Magliveras S. and Nikolova D., The covering numbers of A9 and A11, J. Combin. Math. Combin. Comput., to appear. Suche in Google Scholar

[10] Erdős P., Ko C. and Rado R., Intersection theorems for systems of finite sets, Q. J. Math. Oxford 12 (1961), 313–320. 10.1093/qmath/12.1.313Suche in Google Scholar

[11] Greco D., I gruppi che sono somma di quattro sottogruppi, Rend. Accad. Sci. Napoli 18 (1951), 74–85. Suche in Google Scholar

[12] Greco D., Su alcuni gruppi finiti che sono somma di cinque sottogruppi, Rend. Semin. Mat. Univ. Padova 22 (1953), 313–333. Suche in Google Scholar

[13] Greco D., Sui gruppi che sono somma di quattro o cinque sottogruppi, Rend. Accad. Sci. Napoli 23 (1956), 49–56. Suche in Google Scholar

[14] Haber S. and Rosenfeld A., Groups as unions of proper subgroups, Amer. Math. Monthly 66 (1959), 491–494. 10.2307/2310634Suche in Google Scholar

[15] Holmes P. E., Subgroup coverings of some sporadic groups, J. Combin. Theory Ser. A 113 (2006), 1204–1213. 10.1016/j.jcta.2005.09.006Suche in Google Scholar

[16] Holmes P. E. and Maróti A., Pairwise generating and covering sporadic simple groups, J. Algebra 324 (2010), 25–35. 10.1016/j.jalgebra.2009.10.011Suche in Google Scholar

[17] Kappe L.-C. and Redden J. L., On the covering number of small alternating groups, Computational Group Theory and the Theory of Groups. II, Contemp. Math. 511, American Mathematical Society, Providence (2010), 93–107. 10.1090/conm/511/10045Suche in Google Scholar

[18] Lucido M. S., On the covers of finite groups, Groups St. Andrews 2001 in Oxford, London Math. Soc. Lecture Note Ser. 305, Cambridge University Press, Cambridge (2003), 395–399. 10.1017/CBO9780511542787.009Suche in Google Scholar

[19] Maróti A., Covering the symmetric groups with proper subgroups, J. Combin. Theory Ser. A 110 (2005), 97–111. 10.1016/j.jcta.2004.10.003Suche in Google Scholar

[20] Neumann B. H., Groups covered by permutable subsets, J. Lond Math. Soc. 29 (1954), 236–248. 10.1112/jlms/s1-29.2.236Suche in Google Scholar

[21] Scorza G., I gruppi che possone pensarsi come somma di tre sottogruppi, Boll. Unione Mat. Ital. 5 (1926), 216–218. Suche in Google Scholar

[22] Serena L., On finite covers of groups by subgroups, Advances in Group Theory 2002 (Napoli 2002), Aracne, Rome (2003), 173–190. Suche in Google Scholar

[23] Swartz E., On the covering number of symmetric groups having degree divisible by six, Discrete Math. 339 (2016), no. 11, 2593–2604. 10.1016/j.disc.2016.05.004Suche in Google Scholar

[24] Tomkinson M. J., Groups as the union of proper subgroups, Math. Scand. 81 (1997), 189–198. 10.7146/math.scand.a-12873Suche in Google Scholar

[25] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.7, 2006, http://www.gap-system.org. Suche in Google Scholar

[26] Gurobi Optimizer Reference Manual, Gurobi Optimization, Inc., 2014, http://www.gurobi.com. Suche in Google Scholar

Received: 2016-2-17
Published Online: 2016-10-12
Published in Print: 2016-11-1

© 2016 by De Gruyter

Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcc-2016-0010/html?lang=de
Button zum nach oben scrollen