Startseite Non-abelian analogs of lattice rounding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-abelian analogs of lattice rounding

  • Evgeni Begelfor , Stephen D. Miller EMAIL logo und Ramarathnam Venkatesan
Veröffentlicht/Copyright: 15. Oktober 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Lattice rounding in Euclidean space can be viewed as finding the nearest point in the orbit of an action by a discrete group, relative to the norm inherited from the ambient space. Using this point of view, we initiate the study of non-abelian analogs of lattice rounding involving matrix groups. In one direction, we consider an algorithm for solving a normed word problem when the inputs are random products over a basis set, and give theoretical justification for its success. In another direction, we prove a general inapproximability result which essentially rules out strong approximation algorithms (i.e., whose approximation factors depend only on dimension) analogous to LLL in the general case.

Funding source: NSF

Award Identifier / Grant number: DMS-1201362

We would like to thank Anthony Bloch, Hillel Fürstenberg, Nathan Keller, Peter Sarnak, Adi Shamir, Boaz Tsaban, and Akshay Venkatesh for their helpful comments.

Received: 2015-1-18
Published Online: 2015-10-15
Published in Print: 2015-11-1

© 2015 by De Gruyter

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcc-2015-0010/html?lang=de
Button zum nach oben scrollen