Startseite A novel dual-band 90-degree coupler with harmonic suppression using open-ended stubs and spiral lines
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel dual-band 90-degree coupler with harmonic suppression using open-ended stubs and spiral lines

  • Saeed Gholami und Mehdi Ehsanian EMAIL logo
Veröffentlicht/Copyright: 2. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz

Abstract

This paper presents the design and performance evaluation of a small-size dual-band 90° coupler optimized for operation at 2.42 GHz and 4.9 GHz, making it suitable for applications in 5G communication systems. The proposed coupler uniquely integrates open-ended stubs and spiral lines to achieve significant harmonic suppression, effectively eliminating unwanted harmonics up to the 7th order. This makes the design highly efficient for 5G bands, where minimizing interference and maintaining signal integrity are critical. The dual-band capability of the coupler is demonstrated with minimal insertion loss, with S21 ​parameters of 0.3 dB at 2.42 GHz and 0.8 dB at 4.9 GHz, and acceptable coupling S31 ​of 0.12 dB and 1.36 dB, respectively. The design also maintains a compact footprint, occupying an overall area of just 91.2 mm2 ( 0.009 λ g 2 ), making it one of the smallest couplers compared to existing designs. The fractional bandwidths (FBW) achieved are 22.72 % at 2.42 GHz and 12.93 % at 4.9 GHz, indicating robust performance across both frequency bands. The measurement results closely align with the simulated data, confirming the accuracy and effectiveness of the design approach. This work uniquely integrates open-ended stubs and spiral lines, demonstrating a novel dual-band coupler with superior harmonic suppression for 5G.


Corresponding author: Mehdi Ehsanian, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: This research received no external funding.

  7. Data availability: The corresponding author can be contacted on reasonable request.

References

[1] Pozar, D. M., Microwave Engineering: Theory and Techniques, Hoboken, NJ, USA, Wiley, 2021.Suche in Google Scholar

[2] Hong, J. S. G. and Lancaster, M. J., Microstrip Filters for RF/Microwave Applications, Hoboken, NJ, USA, Wiley, 2004.Suche in Google Scholar

[3] A. Mohseni, A. Doroudi, and M. Karrari, “Robust Kalman filter-based method for excitation system parameters identification using real measured data,” J. Energy Manag. Technol., vol. 4, no. 2, pp. 39–48, 2020.Suche in Google Scholar

[4] S. S. Khatami, M. Shoeibi, R. Salehi, and M. Kaveh, “Energy-efficient and secure double RIS-aided wireless sensor networks: a QoS-aware fuzzy deep reinforcement learning approach,” J. Sens. Actuator Netw., vol. 14‏, no. 1, p. 18, 2025, https://doi.org/10.3390/jsan14010018.Suche in Google Scholar

[5] S. A. Zonouri, M. Hayati, and M. Bahrambeigi, “Design of dual-band Wilkinson power divider based on novel stubs using PSO algorithm,” Int. J. Microw. Wireless Technol., vol. 15, no. 9, pp. 1495–1506, 2023, https://doi.org/10.1017/s1759078723000077.Suche in Google Scholar

[6] M. Hookari, S. Roshani, and S. Roshani, “Design of a low pass filter using rhombus-shaped resonators with an analyticallc equivalent circuit,” Turkish J. Electr. Eng. Comput. Sci., vol. 28, no. 2, pp. 865–874, 2020, https://doi.org/10.3906/elk-1905-153.Suche in Google Scholar

[7] A. Mandal and T. Moyra, “Compact low-pass filter (LPF) with wide harmonic suppression using interdigital capacitor,” Frequenz, vol. 77, nos. 1–2, pp. 1–8, 2023, https://doi.org/10.1515/freq-2022-0008.Suche in Google Scholar

[8] S. Roshani, et al.., “Design of a compact quad-channel microstrip diplexer for L and S band applications,” Micromachines, vol. 14, no. 3, pp. 553, 2023, https://doi.org/10.3390/mi14030553.Suche in Google Scholar PubMed PubMed Central

[9] S. K. Bavandpour, S. Roshani, A. Pirasteh, S. Roshani, and H. Seyedi, “A compact lowpass-dual bandpass diplexer with high output ports isolation,” AEU-Int. J. Electr. Commun., vol. 135, p. 153748, 2021, https://doi.org/10.1016/j.aeue.2021.153748.Suche in Google Scholar

[10] H. Zhang and Z. Zhang, “Miniaturized microstrip branch-line coupler with good harmonic suppression based on radial stub loaded resonators,” Prog. Electromagn. Res. Lett., vol. 87, pp. 15–20, 2019, https://doi.org/10.2528/pierl19070103.Suche in Google Scholar

[11] P. L. Chi and K. L. Ho, “Design of dual-band coupler with arbitrary power division ratios and phase differences,” IEEE Trans. Microw. Theor. Tech., vol. 62, no. 12, pp. 2965–2974, 2014, https://doi.org/10.1109/tmtt.2014.2364218.Suche in Google Scholar

[12] Long, Z., Zhang, B., Liu, G., Wu, Z., and Yan, Q., “A compact branch-line coupler with harmonic suppression using novel circular-shaped resonators for medical imaging systems,” Multiscale and Multidiscip. Model., Exp. Des., vol. 7, no. 3, pp. 2987–3004, 2024. https://doi.org/10.1007/s41939-023-00362-7.Suche in Google Scholar

[13] M. A. Chaudhary, S. Roshani, and S. Roshani, “An ultra compact microstrip branch line coupler with wide stopband using LCL filter and meandered stubs for microwave applications,” Processes, vol. 11, no. 5, p. 1582, 2023, https://doi.org/10.3390/pr11051582.Suche in Google Scholar

[14] A. M. Nasr and A. M. Safwat, “Tightly coupled directional coupler using slotted-microstrip line,” IEEE Trans. Microw. Theor. Tech., vol. 66, no. 10, pp. 4462–4470, 2018, https://doi.org/10.1109/tmtt.2018.2847696.Suche in Google Scholar

[15] R. K. Barik, S. Koziel, and S. Szczepanski, “Wideband highly-selective bandpass filtering branch-line coupler,” IEEE Access, vol. 10, pp. 20832–20838, 2022, https://doi.org/10.1109/access.2022.3152802.Suche in Google Scholar

[16] Z. R. Omam, V. Nayyeri, S. H. Javid-Hosseini, and O. M. Ramahi, “Simple and high-sensitivity dielectric constant measurement using a high-directivity microstrip coupled-line directional coupler,” IEEE Trans. Microw. Theor. Tech., vol. 70, no. 8, pp. 3933–3942, 2022, https://doi.org/10.1109/tmtt.2022.3183130.Suche in Google Scholar

[17] M. Y. İmeci, B. Tütüncü, and Ş. T. İmeci, “A 3-dB 90 degrees microstrip hybrid directional coupler at 2.27 GHz,” AEU-Int. J. Electron. Commun., vol. 163, p. 154606, 2023, https://doi.org/10.1016/j.aeue.2023.154606.Suche in Google Scholar

[18] K. Demir, Ş. T. İmeci, and B. Tütüncü, “Wideband compact 3-dB microstrip power divider for L-and S-band applications,” Phys. Scr., vol. 99, no. 12, p. 125558, 2024, https://doi.org/10.1088/1402-4896/ad9425.Suche in Google Scholar

[19] S. A. Zonouri and M. Hayati, “A compact Gysel power divider with ultra-wide rejection band and high fractional bandwidth,” Int. J. RF and Microw. Computer-Aided Eng., vol. 31, no. 6, p. e22643, 2021, https://doi.org/10.1002/mmce.22643.Suche in Google Scholar

[20] S. A. Zonouri, H. Ali Alsailawi, and M. Mudhafar, “A high-sensitivity Wilkinson power divider sensor for detecting dielectric properties in edible oils,” Sens. Imag., vol. 26, no. 1, pp. 1–34, 2025, https://doi.org/10.1007/s11220-025-00567-9.Suche in Google Scholar

[21] A. Kayalvizhi, G. Sankara Malliga, and R. Seetharaman, “Compact inverted E-shaped open-circuited impedance matching stub bandpass filter for wireless applications,” Analog Integr. Circuits and Signal Process., vol. 123, no. 1, p. 14, 2025, https://doi.org/10.1007/s10470-025-02357-5.Suche in Google Scholar

[22] X. Sun, C. Rong, H. Gao, and M. Zhang, “A miniaturization dual-passband microwave filter based on load-coupled open stub lines,” Prog. Electromagn. Res. Lett., vol. 124, 2025, https://doi.org/10.2528/pierl24103001.Suche in Google Scholar

[23] Ş. T. İmeci, B. Tütüncü, F. Bešlija, and L. Herceg, “Microstrip filters based on open stubs and SIR for high frequency and ultra-wideband applications,” J. Eng. Res., vol. 10, no. 3A, 2022‏.Suche in Google Scholar

[24] S. S. Khatami, M. Shoeibi, A. E. Oskouei, D. Martín, and M. K. Dashliboroun, “5DGWO-GAN: a novel five-dimensional gray wolf optimizer for generative adversarial network-enabled intrusion detection in IoT systems,” Comput., Mater. & Contin., vol. 82, no. 1, 2025‏, https://doi.org/10.32604/cmc.2024.059999.Suche in Google Scholar

[25] K. Y. You and M. S. Sim, “Survey on RF, microwave, and millimeter-wave planar passive components design using analytical approach,”Handb. Res. Emerg. Designs Appl. Microw. Millimet. Wave Circ., 2023, pp. 404–482, https://doi.org/10.4018/978-1-6684-5955-3.ch014.Suche in Google Scholar

[26] S. A. Zonouri and M. Hayati, “A compact ultra-wideband Wilkinson power divider based on trapezoidal and triangular-shaped resonators with harmonics suppression,” Microelectron. J., vol. 89, pp. 23–29, 2019, https://doi.org/10.1016/j.mejo.2019.05.001.Suche in Google Scholar

[27] Yahya, S. I., et al.., “Design and optimization of a compact microstrip filtering coupler with low losses and improved group delay for high-performance RF communication systems,” IEEE Access, vol. 11, pp. 103976–103985, 2023. https://doi.org/10.1109/access.2023.3317441.Suche in Google Scholar

[28] X. Shi, et al.., “Design of filtering coupler based on patch resonator with high selectivity,” Int. J. RF and Microw. Computer-Aided Eng., vol. 2023, no. 1, p. 2437462, 2023, https://doi.org/10.1155/2023/2437462.Suche in Google Scholar

[29] S. Roshani, S. I. Yahya, S. Roshani, A. H. Farahmand, and S. Hemmati, “Design of a modified compact coupler with unwanted harmonics suppression for L-band applications,” Electronics, vol. 11, no. 11, p. 1747, 2022, https://doi.org/10.3390/electronics11111747.Suche in Google Scholar

[30] V. K. Velidi, B. Patel, and S. Sanyal, “Harmonic suppressed compact wideband branch-line coupler using unequal length open-stub units,” Int. J. RF and Microw. Computer-Aided Eng., vol. 21, no. 1, pp. 115–119, 2011, https://doi.org/10.1002/mmce.20495.Suche in Google Scholar

[31] K. Parsaei, R. Keshavarz, R. M. Boroujeni, and N. Shariati, “Compact pixelated microstrip forward broadside coupler using binary particle swarm optimization,” IEEE Trans. Circ. Syst. I: Regular Papers, vol. 70, no. 12, pp. 5265–5274, 2023, https://doi.org/10.1109/TCSI.2023.3314621.Suche in Google Scholar

[32] S. Alizadeh, S. Roshani, and S. Roshani, “A modified branch line coupler with compact size and ultra wide harmonics suppression band,” Electromagnetics, vol. 42, no. 5, pp. 377–387, 2022, https://doi.org/10.1080/02726343.2022.2118422.Suche in Google Scholar

[33] A. A. Abdulbari, S. K. A. Rahim, M. Z. A. Abd Aziz, K. G. Tan, N. K. Noordin, and M. Z. M. Nor, “New design of wideband microstrip branch line coupler using T-shape and open stub for 5G application,” Int. J. Electr. Comput. Eng., vol. 11, no. 2, p. 1346, 2021, https://doi.org/10.11591/ijece.v11i2.pp1346-1355.Suche in Google Scholar

[34] H. Alhalabi, H. Issa, E. Pistono, D. Kaddour, F. Podevin, and A. P. BahetiFerrari, “Miniaturized branch-line coupler based on slow-wave microstrip lines,” Int. J. Microw. Wireless Technol., vol. 10, no. 10, pp. 1103–1106, 2018, https://doi.org/10.1017/s1759078718001204.Suche in Google Scholar

[35] J. Shi, et al.., “A balanced filtering branch-line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 119–121, 2016, https://doi.org/10.1109/lmwc.2016.2516764.Suche in Google Scholar

[36] J. Coromina, P. Velez, J. Bonache, and F. Martín, “Branch line couplers with small size and harmonic suppression based on non-periodic step impedance shunt stub (SISS) loaded lines,” IEEE Access, vol. 8, pp. 67310–67320, 2020, https://doi.org/10.1109/access.2020.2985569.Suche in Google Scholar

Received: 2025-02-10
Accepted: 2025-05-19
Published Online: 2025-06-02

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2025-0044/pdf
Button zum nach oben scrollen