Home Towards a fully integrated sub-THz microfluidic sensor platform for dielectric spectroscopy
Article
Licensed
Unlicensed Requires Authentication

Towards a fully integrated sub-THz microfluidic sensor platform for dielectric spectroscopy

  • Carl Heine EMAIL logo , Emre Can Durmaz EMAIL logo , Defu Wang , Zhibo Cao , Matthias Wietstruck , Bernd Tillack and Dietmar Kissinger
Published/Copyright: October 10, 2022
Become an author with De Gruyter Brill

Abstract

Dielectric spectroscopy in the sub-THz regime is a promising candidate for microfluidic-based analysis of biological cells and bio-molecules, since multiple vibrational and rotational transition energy levels exist in this frequency range (P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theor. Tech., vol. 52, pp. 2438–2447, 2004). This article presents our recent efforts in the implementation of microfluidic channel networks with silicon-based technologies to unleash the potential of an integrated sub-THz microfluidic sensor platform. Various aspects of dielectric sensors, readout systems, flowmeter design as well as implemention- and technology-related questions are addressed. Three dielectric sensor systems are presented operating at 240 GHz realizing transmission-based, reflection-based and full two-port architectures. Furthermore different silicon based microchannel integration techniques are discussed as well as a novel copper pillar-based PCB microchannel method is proposed and successfully demonstrated.


Corresponding authors: Carl Heine, Ulm University, Ulm, Germany; and IHP – Leibniz-Institut für innovative Mikroelektronik, Frankfurt Oder, Germany, E-mail: ; and Emre Can Durmaz, IHP – Leibniz-Institut für innovative Mikroelektronik, Frankfurt Oder, Germany; and Technische Universität Berlin, Berlin, Germany, E-mail:

Award Identifier / Grant number: KI 1768/5-2

Award Identifier / Grant number: TI 194/9-2

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported in part by the Deutsche Forschungsgemeinschaft under the ESSENCE project THz-LoC II (KI 1768/5-2 and TI 194/9-2).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. Fricke, “A mathemathical treatment of the electric conductivity and capacity of disperse systems. I. The electric conductivity of a suspension of homogenous spheroids,” Phys. Rev., vol. 24, pp. 575–587, 1924, https://doi.org/10.1103/physrev.24.575.Search in Google Scholar

[2] K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics. I. Alternating current characteristics,” J. Chem. Phys., vol. 9, no. 4, pp. 341–351, 1941, https://doi.org/10.1063/1.1750906.Search in Google Scholar

[3] D. Kissinger, G. Kahmen, and R. Weigel, “Millimeter-wave and terahertz transceivers in SiGe BiCMOS technologies,” IEEE Trans. Microw. Theor. Tech., vol. 69, no. 10, pp. 4541–4560, 2021, https://doi.org/10.1109/tmtt.2021.3095235.Search in Google Scholar

[4] K. Schmalz, N. Rothbart, P. F.-X. Neumaier, J. Borngräber, H.-W. Hübers, and D. Kissinger, “Gas spectroscopy system for breath analysis at mm-wave/THz using SiGe BiCMOS circuits,” IEEE Trans. Microw. Theor. Tech., vol. 65, no. 5, pp. 1807–1818, 2017. https://doi.org/10.1109/tmtt.2017.2650915.Search in Google Scholar

[5] F. Artis, T. Chen, T. Chretiennot, et al., “Microwaving biological cells,” IEEE Microw. Mag., vol. 16, no. 4, pp. 87–96, 2015. https://doi.org/10.1109/mmm.2015.2393997.Search in Google Scholar

[6] P. Hillger, J. Grzyb, R. Jain, and U. R. Pfeiffer, “Terahertz imaging and sensing application with silicon-based technologies,” IEEE Trans. Terahertz Sci. Technol., vol. 9, no. 1, pp. 1–19, 2019, https://doi.org/10.1109/tthz.2018.2884852.Search in Google Scholar

[7] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368–373, 2006, https://doi.org/10.1038/nature05058.Search in Google Scholar PubMed

[8] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem., vol. 70, no. 23, pp. 4974–4984, 1998, https://doi.org/10.1021/ac980656z.Search in Google Scholar PubMed

[9] C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, “A practical guide for the fabrication of microfluidic devices using glass and silicon,” Biomicrofluidics, vol. 6, no. 1, pp. 16505-01–16505-16, 2012. https://doi.org/10.1063/1.3689939.Search in Google Scholar PubMed PubMed Central

[10] R. M. Tiggelaar, “Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane,” Sensor Actuator Phys., vol. 119, no. 1, pp. 196–205, 2005, https://doi.org/10.1016/j.sna.2004.09.004.Search in Google Scholar

[11] Y. Huang and A. J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab Chip, vol. 13, no. 19, pp. 3929–3934, 2013, https://doi.org/10.1039/c3lc50437a.Search in Google Scholar PubMed PubMed Central

[12] N. M. Salih, N. Nafarizal, C. F. Soon, M. Z. Sahdan, A. Tijjani, and U. Hashim, “Glass etching for cost-effective microchannels fabrication,” in 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014), 2014, pp. 432–435.10.1109/SMELEC.2014.6920890Search in Google Scholar

[13] Z. K. Wang, M. H. Lim, D. M. Lian, and H. Y. Zheng, “Computational profiling of laser processing glass substrate for microchannel fabrication,” in International Conference on Computational Problem-Solving, 2010, pp. 55–58.Search in Google Scholar

[14] L. L. Wu, S. Babikian, G.-P. Li, and M. Bachman, “Microfluidic printed circuit boards,” in 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 2011, pp. 1576–1581.10.1109/ECTC.2011.5898721Search in Google Scholar

[15] P. Kassanos, F. Seichepine, I. Kassanos, and G.-Z. Yang, “Development and characterization of a PCB-based microfluidic Y-channel,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), 2020, pp. 5037–5040.10.1109/EMBC44109.2020.9176657Search in Google Scholar PubMed

[16] J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—a review,” Micromachines, vol. 3, no. 3, pp. 550–573, 2012, https://doi.org/10.3390/mi3030550.Search in Google Scholar

[17] N. T. Nguyen, “Micromachined flow sensors—a review,” Flow Meas. Instrum., vol. 8, no. 1, pp. 7–16, 1997, https://doi.org/10.1016/s0955-5986(97)00019-8.Search in Google Scholar

[18] A. Gomez-Torrent and J. Oberhammer, “Micromachined waveguide interposer for the characterization of multi-port sub-THz devices,” J. Infrared, Millim. Terahertz Waves, vol. 41, no. 3, pp. 245–257, 2020, https://doi.org/10.1007/s10762-019-00663-4.Search in Google Scholar

[19] R. C. Li, RF Circuit Design, Hoboken, NJ, USA, Wiley, 2012.10.1002/9781118309940Search in Google Scholar

[20] D. Wang, K. Schmalz, M. H. Eissa, et al., “Homodyne and heterodyne terahertz dielectric sensors: prototyping and comparison in BiCMOS technology for lab-on-chip applications,” in Proc. IEEE Int. Microw. Biomed. Conf. (IMBioC), Philadelphia, PA, USA, IEEE, 2018, pp. 4–6.10.1109/IMBIOC.2018.8428934Search in Google Scholar

[21] V. Lammert, C. Heine, J. Wessel, et al., “A K-Band complex permittivity sensor for biomedical application in 130-nm SiGe BiCMOS,” IEEE Trans. Circuits Syst. II, vol. 66, no. 10, pp. 1628–1632, 2019. https://doi.org/10.1109/tcsii.2019.2921199.Search in Google Scholar

[22] F. I. Jamal, S. Gulha, M. H. Eissa, J. Wessel, and D. Kissinger, “A fully integrated low-power 30 GHz complex dielectric sensor in a 0.25-µm BiCMOS technology,” IEEE J. Electromagn. RF Microw. Med. Biol., vol. 2, no. 3, pp. 163–171, 2018, https://doi.org/10.1109/jerm.2018.2835656.Search in Google Scholar

[23] F. I. Jamal, S. Gulha, M. H. Eissa, D. Kissinger, and J. Wessel, “A low-power 30 GHz complex dielectric chem-bio-sensor in a SiGe BiCMOS technology,” in Proc. IEEE MTT-S IMBIOC, Gothenburg, Schweden, IEEE, 2017, pp. 1–4.10.1109/IMBIOC.2017.7965787Search in Google Scholar

[24] F. I. Jamal, S. Guha, M. H. Eissa, et al., “Low-power miniature K-band sensors for dielectric characterization of biomaterials,” IEEE Trans. Microw. Theor. Tech., vol. 65, no. 3, pp. 1012–1023, 2017. https://doi.org/10.1109/tmtt.2016.2633350.Search in Google Scholar

[25] M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwave-based noninvasive concentration measurements for biomedical applications,” IEEE Trans. Microw. Theor. Tech., vol. 61, no. 5, pp. 2195–2204, 2013, https://doi.org/10.1109/tmtt.2013.2250516.Search in Google Scholar

[26] I. Nasr, H. Knapp, K. Aufinger, R. Weigel, and D. Kissinger, “A 50–100-GHz highly integrated octave-bandwidth transmitter and receiver chipset in 0.35 μm SiGe technology,” IEEE Trans. Microw. Theor. Tech., vol. 62, no. 9, pp. 2118–2131, 2014. https://doi.org/10.1109/TMTT.2014.2337289.Search in Google Scholar

[27] B. Laemmle, “A 125-GHz permittivity sensor with read-out circuit in a 250-nm SiGe BiCMOS technology,” IEEE Trans. Microw. Theor. Tech., vol. 61, no. 5, pp. 2185–2194, 2013, https://doi.org/10.1109/tmtt.2013.2253792.Search in Google Scholar

[28] D. Wang, M. H. Eissa, K. Schmalz, T. Kämpfe, and D. Kissinger, “240-GHz reflectometer-based dielectric sensor with integrated transducers in a 130-nm SiGe BiCMOS technology,” IEEE Trans. Microw. Theor. Tech., vol. 69, no. 1, pp. 1027–1035, 2021. https://doi.org/10.1109/tmtt.2020.3038382.Search in Google Scholar

[29] D. Wang, M. H. Eissa, K. Schmalz, T. Kämpfe, and D. Kissinger, “Integrated 240-GHz dielectric sensor with DC readout circuit in a 130-nm SiGe BiCMOS technology,” IEEE Trans. Microw. Theor. Tech., vol. 66, no. 9, pp. 4232–4241, 2018. https://doi.org/10.1109/tmtt.2018.2839104.Search in Google Scholar

[30] D. Wang, M. H. Eissa, K. Schmalz, et al., “240-GHz four-channel power-tuning heterodyne sensing readout system with reflection and transmission measurements in a 130-nm SiGe BiCMOS technology,” IEEE Trans. Microw. Theor. Tech., vol. 67, no. 12, pp. 5296–5306, 2019. https://doi.org/10.1109/tmtt.2019.2949820.Search in Google Scholar

[31] J. Nehring, M. Dietz, K. Aufinger, G. Fischer, R. Weigel, and D. Kissinger, “A 4–32-GHz chipset for a highly integrated heterodyne two-port vector network analyzer,” IEEE Trans. Microw. Theor. Tech., vol. 64, no. 3, pp. 892–905, 2016.10.1109/TMTT.2016.2520483Search in Google Scholar

[32] J. Nehring, M. Schütz, M. Dietz, et al., “Highly integrated 4-32-GHz two-port vector network analyzers for instrumentation and biomedical application,” IEEE Trans. Microw. Theor. Tech., vol. 65, no. 1, pp. 229–244, 2017. https://doi.org/10.1109/tmtt.2016.2616873.Search in Google Scholar

[33] I. Nasr, J. Nehring, K. Aufinger, G. Fischer, R. Weigel, and D. Kissinger, “Single-and dual-port 50-100-GHz integrated vector network analyzers with on-chip dielectric sensors,” IEEE Trans. Microw. Theor. Tech., vol. 62, no. 9, pp. 2168–2179, 2014, https://doi.org/10.1109/tmtt.2014.2337264.Search in Google Scholar

[34] H. Chung, Q. Ma, M. Sayginer, and G. M. Rebeiz, “A Packaged 0.01-26-GHz single-chip SiGe reflectometer for two-port vector network analyzers,” IEEE Trans. Microw. Theor. Tech., vol. 68, no. 5, pp. 1794–1808, 2020, https://doi.org/10.1109/tmtt.2019.2961901.Search in Google Scholar

[35] E. Turkmen and Y. Gurbuz, “A SiGe BiCMOS W-band single-chip frequency extension module for VNAs,” IEEE Trans. Microw. Theor. Tech., vol. 68, no. 1, pp. 211–221, 2020, https://doi.org/10.1109/tmtt.2019.2948331.Search in Google Scholar

[36] D. Wang, M. H. Eissa, K. Schmalz, T. Kämpfe, and D. Kissinger, “480-GHz sensor with subharmonic mixer and integrated transducer in a 130-nm SiGe BiCMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 9, pp. 908–911, 2020. https://doi.org/10.1109/lmwc.2020.3013317.Search in Google Scholar

[37] A. Güner, T. Mausolf, J. Wessel, D. Kissinger, and K. Schmalz, “A 440-540-GHz subharmonic mixer in 130-nm SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 12, pp. 1161–1164, 2020. https://doi.org/10.1109/lmwc.2020.3030315.Search in Google Scholar

[38] A. Güner, T. Mausolf, J. Wessel, D. Kissinger, and K. Schmalz, “A 440-540 GHz transmitter in 130 nm SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 779–782, 2021. https://doi.org/10.1109/lmwc.2021.3060820.Search in Google Scholar

[39] M. Hiebel, Fundamentals of Vector Network Analysis, Munich, Germany, Rohde and Schwarz, 2016.Search in Google Scholar

[40] A. Ulusoy, P. Song, R. L. Schmid, et al.., “A low-loss and high isolation D-band SPDT switch utilizing deep-saturation SiGe HBTs,” IEEE Microw. Wireless Compon. Lett., vol. 62, no. 11, pp. 2755–2767, 2014.10.1109/TMTT.2014.2354017Search in Google Scholar

[41] M. Inac, M. Wietstruck, A. Göritz, et al.., “BiCMOS integrated microfluidic packaging by wafer bonding for lab-on-chip applications,” in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017, pp. 786–791.10.1109/ECTC.2017.153Search in Google Scholar

[42] B. Yu, Z. Gan, J. Xu, and S. Liu, “The study of a microchannel integrated gas flow sensor,” Chin. J. Electron., vol. 18, pp. 435–438, 2009.Search in Google Scholar

Received: 2022-04-26
Accepted: 2022-09-07
Published Online: 2022-10-10
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2022-0091/html
Scroll to top button