Home Label-free single-cell counting and characterization in the GHz-range
Article
Licensed
Unlicensed Requires Authentication

Label-free single-cell counting and characterization in the GHz-range

  • Paul V. Gwozdz , Jann Harberts , Robert Zierold and Robert H. Blick EMAIL logo
Published/Copyright: October 20, 2022
Become an author with De Gruyter Brill

Abstract

We demonstrate operation of a micropore based flow cytometer in the radio-frequency range. Apart from simply counting micron sized particles, such as cells, with close to nano-second resolution this counter offers the additional benefit of delivering insight into the intracellular environment. Such non-invasive screening of the cell’s interior based on analysing amplitude and phase of the signal is helpful in characterizing the biological activity of cells. In detail we are using heterodyne mixing to demodulate the temporal impedance changes, which are induced by cells translocating through a micropore embedded in a radio-frequency circuit. This allows us to measure every amplitude and phase modulation induced by a translocation event. Herein, we compare the Jurkat cells (human T lymphocytes) recordings with a control group of polystyrene beads. As the cells are measured on a single cell level, the variations on the measured amplitude and phase signals are used, herein, to sense morphological cell changes in real time.


Corresponding author: Robert H. Blick, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, DESY Campus Bldg. 600, Luruper Chaussee 149, 22761 Hamburg, Germany; and Materials Science and Engineering, University of Wisconsin-Madison, 1550 University Avenue, Madison, WI, USA, E-mail:

Acknowledgments

We like to thank our colleagues A. Guse, B. Diercks, and L. Hernandez for in depth discussions and are looking forward to applying our improved devices for detailed studies on T cells.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We acknowledge support by the Deutsche Forschungs-gemeinschaft (DFG) within the Priority Program SPP-1857 (‘ESSENCE’) and by the Joachim-Herz-Stiftung within the ‘BioPict’-program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. P. Schwan and K. R. Foster, “RF-field interactions with biological systems: electrical properties and biophysical mechanisms,” Proc. IEEE, vol. 68, p. 104, 1980, https://doi.org/10.1109/PROC.1980.11589.Search in Google Scholar

[2] B. Onaral, H. H. Sun, and H. P. Schwan, “Electrical properties of bioelectrodes,” IEEE Trans. Biomed. Eng., vol. 31, pp. 827–832, 1984. https://doi.org/10.1109/TBME.1984.325245.Search in Google Scholar PubMed

[3] K. R. Foster and H. P. Schwan, “Dielectric properties of tissue and biological materials: a critical review,” Crit. Rev. Biomed. Eng., vol. 17, pp. 25–104, 1989.Search in Google Scholar

[4] H. P. Schwan, “Linear and nonlinear electrode polarization and biological materials,” Ann. Biomed. Eng., vol. 20, p. 269, 1992, https://doi.org/10.1007/BF02368531.Search in Google Scholar PubMed

[5] H. P. Schwan, E. T. McAdams, and J. Jossinet, “Sauer’s non-linear voltage division,” Med. Bio. Eng. Comp., vol. 40, pp. 542–545, 2002.10.1007/BF02345452Search in Google Scholar PubMed

[6] S. Takashima, K. Asami, and Y. Takahashi, “Frequency domain studies of impedance characteristics of biological cells using micropipet technique,” Biophys. J., vol. 54, pp. 995–1000, 1988. https://doi.org/10.1016/S0006-3495(88)83037-6.Search in Google Scholar PubMed PubMed Central

[7] M. Stubbe and J. Gimsa, “Maxwell’s mixing equation revisited: characteristic impedance equations for ellipsoidal cells,” Biophys. J., vol. 109, p. 194, 2015, https://doi.org/10.1016/j.bpj.2015.06.021.Search in Google Scholar PubMed PubMed Central

[8] B. Brazey, J. Cottet, A. Bolopion, H. Van Lintel, P. Renaud, and M. Gauthier, “Impedance-based real-time position sensor for lab-on-a-chip devices,” Lab Chip, vol. 18, p. 818, 2018, https://doi.org/10.1039/c7lc01344b.Search in Google Scholar PubMed

[9] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41, p. 2251, 1996, https://doi.org/10.1088/0031-9155/41/11/002.Search in Google Scholar PubMed

[10] A. P. O’Rourke, M. Lazebnik, J. M. Bertram, et al.., “Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe,” Phys. Med. Biol., vol. 52, p. 4707, 2007, https://doi.org/10.1088/0031-9155/52/15/022.Search in Google Scholar PubMed

[11] L. Abdilla, C. Sammut, and L. Z. Mangion, “Dielectric properties of muscle and liver from 500MHz to 40GHz,” Electromagn. Biol. Med., vol. 32, pp. 244–252, 2013. https://doi.org/10.3109/15368378.2013.776436.Search in Google Scholar PubMed

[12] S. Egot-Lemaire, J. Pijanka, J. Sulé-Suso, and S. Semenov, “Dielectric spectroscopy of normal and malignant human lung cells at ultra-high frequencies,” Phys. Med. Biol., vol. 54, p. 2341, 2009, https://doi.org/10.1088/0031-9155/54/8/006.Search in Google Scholar PubMed

[13] M. Al Ahmad, Z. Al Natour, F. Mustafa, and T. A. Rizvi, “Electrical characterization of normal and cancer cells,” IEEE Access, vol. 6, p. 25979, 2018, https://doi.org/10.1109/ACCESS.2018.2830883.Search in Google Scholar

[14] X. Liang, K. A. Graham, A. C. Johannessen, D. E. Costea, and F. H. Labeed, “Human oral cancer cells with increasing tumorigenic abilities exhibit higher effective membrane capacitance,” Integr. Biol., vol. 6, p. 545, 2014, https://doi.org/10.1039/c3ib40255j.Search in Google Scholar PubMed

[15] H. A. Svahn and A. Van Den Berg, “Single cells or large populations,” Lab Chip, vol. 7, pp. 544–546, 2007. https://doi.org/10.1039/c2lc90065c.Search in Google Scholar PubMed

[16] H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, “Electrical impedance spectroscopy using microchannels with integrated metal electrodes,” IEEE J. Microelectromech. Syst., vol. 8, pp. 50–57, 1999.10.1109/84.749402Search in Google Scholar

[17] D. K. Wood, S. H. Oh, S. H. Lee, H. T. Soh, and A. N. Cleland, “High-bandwidth radio frequency Coulter counter,” Appl. Phys. Lett., vol. 87, p. 184106, 2005, https://doi.org/10.1063/1.2125111.Search in Google Scholar

[18] D. K. Wood, M. V. Requa, and A. N. Cleland, “Microfabricated high-throughput electronic particle detector,” Rev. Sci. Instrum., vol. 78, p. 104301, 2007, https://doi.org/10.1063/1.2794230.Search in Google Scholar PubMed

[19] T. Sun, S. Gawad, C. Bernabini, N. G. Green, and H. Morgan, “Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations,” Meas. Sci. Technol., vol. 18, p. 2859, 2007, https://doi.org/10.1088/0957-0233/18/9/015.Search in Google Scholar

[20] T. Sun, C. Bernabini, and H. Morgan, “Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules,” Langmuir, vol. 26, p. 3821, 2010, https://doi.org/10.1021/la903609u.Search in Google Scholar PubMed

[21] K. Heileman, J. Daoud, and M. Tabrizian, “Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis,” Biosens. Bioelectron., vol. 49, pp. 348–349, 2013.10.1016/j.bios.2013.04.017Search in Google Scholar PubMed

[22] A. Bhat, J. Rodriguez, H. Qin, et al.., “High bandwidth resonant radio frequency circuit for lipid bilayer detection,” Biophys. J., vol. 102, p. 181a, 2012, https://doi.org/10.1016/j.bpj.2011.11.983.Search in Google Scholar

[23] A. Bhat, J. Rodriguez, H. Qin, et al.., “Radio frequency tank circuit for probing planar lipid bilayers,” Soft Nanosci. Lett., vol. 03, p. 87, 2013, https://doi.org/10.4236/snl.2013.34016.Search in Google Scholar

[24] E. Stava, H. C. Shin, M. Yu, et al.., “Ultra-stable glass microcraters for on-chip patch clamping,” RSC Adv., vol. 4, p. 39073, 2014, https://doi.org/10.1039/c4ra04978k.Search in Google Scholar

[25] P. J. Resto, A. Bhat, E. Stava, et al.., “Flow characterization and patch clamp dose responses using jet microfluidics in a tubeless microfluidic device,” J. Neurosci. Methods, vol. 291, p. 182, 2017, https://doi.org/10.1016/j.jneumeth.2017.08.025.Search in Google Scholar PubMed PubMed Central

[26] F. Artis, T. Chen, T. Chretiennot, et al.., “Microwaving biological cells: intracellular analysis with microwave dielectric spectroscopy,” IEEE Microw. Mag., vol. 16, p. 87, 2015, https://doi.org/10.1109/MMM.2015.2393997.Search in Google Scholar

[27] J. Chen, C. Xue, Y. Zhao, D. Chen, M. H. Wu, and J. Wang, “Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization,” Int. J. Mol. Sci., vol. 16, pp. 9804–9830, 2015.10.3390/ijms16059804Search in Google Scholar PubMed PubMed Central

[28] C. S. Bausch, C. Heyn, W. Hansen, et al., “Ultra-fast cell counters based on microtubular waveguides,” Sci. Rep., vol. 7, pp. 41584–41592, 2017. https://doi.org/10.1038/srep41584.Search in Google Scholar PubMed PubMed Central

[29] M. Yu, H.-S. Kim, and R. H. Blick, “Laser drilling of nano-pores in sandwiched thin glass membranes,” Opt. Express, vol. 17, p. 10044, 2009, https://doi.org/10.1364/OE.17.010044.Search in Google Scholar PubMed

[30] J. Rodriguez, H.-C. Shin, E. Stava, et al.., “Ablating nanoscale pores in crystalline quartz using laser-induced micro-plasmas in tri-layer structures,” Opt. Mater. Express, vol. 10, p. 1991, 2020, https://doi.org/10.1364/ome.395494.Search in Google Scholar

[31] A. Bhat, P. V. Gwozdz, A. Seshadri, M. Hoeft, and R. H. Blick, “Tank circuit for ultrafast single-particle detection in micropores,” Phys. Rev. Lett., vol. 121, 2018, https://doi.org/10.1103/PhysRevLett.121.078102.Search in Google Scholar PubMed

[32] T. Tao, J. Ro, and J. Melngailis, “Focused ion beam induced depostion of platinum,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 8, pp. 1826–1829, 1990. https://doi.org/10.1116/1.585167.Search in Google Scholar

[33] G. J. Verbiest and M. J. Rost, “Beating beats mixing in heterodyne detection schemes,” Nat. Commun., vol. 6, 2015, https://doi.org/10.1038/ncomms7444.Search in Google Scholar PubMed

[34] H. Happy, K. Haddadi, D. Theron, T. Lasri, and G. Dambrine, “Measurement techniques for RF nanoelectronic devices: new equipment to overcome the problems of impedance and scale mismatch,” IEEE Microw. Mag., vol. 15, p. 30, 2014, https://doi.org/10.1109/MMM.2013.2288710.Search in Google Scholar

[35] V. T. Rathod, “A review of electric impedance matching techniques for piezoelectric sensors, actuators, and transducers,” Electron, vol. 8, p. 169, 2019.10.3390/electronics8020169Search in Google Scholar

[36] R. M. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker, “Noise in solid-state nanopores,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, p. 417, 2008, https://doi.org/10.1073/pnas.0705349105.Search in Google Scholar PubMed PubMed Central

[37] J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, “Integrated nanopore sensing platform with sub-microsecond temporal resolution,” Nat. Methods, vol. 9, p. 487, 2012, https://doi.org/10.1038/nmeth.1932.Search in Google Scholar PubMed PubMed Central

[38] J. Harberts, R. Zierold, C. Fendler, et al.., “Culturing and patch clamping of Jurkat T cells and neurons on Al2O3 coated nanowire arrays of altered morphology,” RSC Adv., vol. 9, p. 11194, 2019, https://doi.org/10.1039/c8ra05320k.Search in Google Scholar PubMed PubMed Central

[39] J. Harberts, M. Kusch, J. O’sullivan, R. Zierold, and R. H. Blick, “A temperature-controlled patch clamp platform demonstrated on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons,” Bioengineering, vol. 7, p. 46, 2020, https://doi.org/10.3390/bioengineering7020046.Search in Google Scholar PubMed PubMed Central

[40] S. Elmore, “A review of programmed cell death,” Toxicol. Pathol., vol. 35, pp. 495–516, 2007. https://doi.org/10.1080/01926230701320337.Search in Google Scholar PubMed PubMed Central

Received: 2022-06-24
Accepted: 2022-10-06
Published Online: 2022-10-20
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2022-0132/html
Scroll to top button