Home Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors
Article
Licensed
Unlicensed Requires Authentication

Towards single-cell pulsed EPR using VCO-based EPR-on-a-chip detectors

  • Mohamed Atef Hassan , Michal Kern , Anh Chu , Gatik Kalra , Ekaterina Shabratova , Aleksei Tsarapkin , Neil MacKinnon , Klaus Lips , Christian Teutloff , Robert Bittl , Jan Gerrit Korvink and Jens Anders EMAIL logo
Published/Copyright: September 16, 2022
Become an author with De Gruyter Brill

Abstract

Electron paramagnetic resonance (EPR) is the gold standard for studying paramagnetic species. As an example, in structural biology, it allows to extract information about distance distributions on the nanometer scale via site-directed spin labeling. Conventional pulsed EPR of biological samples is currently limited to relatively large sample concentrations and cryogenic temperatures, mainly due to low sensitivity and the significant dead time associated with conventional resonator-based EPR setups, essentially precluding in-cell EPR under physiological conditions. This paper presents our latest progress toward single-cell pulsed EPR using VCO-based EPR-on-a-chip (EPRoC) sensors. Together with an analytical model for VCO-based pulsed EPR, we present an experimental scheme to perform dead-time-free pulsed EPR measurements using EPRoC detectors. The proposed scheme is validated using extensive numerical simulations and proof-of-concept experiments on the spin dynamics of an organic radical at room temperature using a custom-designed EPRoC detector operating in the Ka-band around 30.4 GHz. Additionally, we discuss methods to improve the excitation field homogeneity and sample handling through chip post-processing and custom-designed microfluidics. Finally, we present our progress towards compact, portable pulsed EPR spectrometers incorporating EPRoC detectors, microfluidics, and custom-designed permanent magnets. Such portable EPR spectrometers can pave the way toward new EPR applications, including point-of-care diagnostics.


Corresponding author: Jens Anders, Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany; and Center for Integrated Quantum Science and Technology, Stuttgart and Ulm, Germany, E-mail:

Funding source: German Research Foundation (Deutsche Forschungsgemeinschaft)

Award Identifier / Grant number: AN 984/16-1

Award Identifier / Grant number: BI 464/14-1

Award Identifier / Grant number: KO 1883/34-1

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the DFG within SPP 1857 under contracts no. AN 984/16-1, BI 464/14-1, KO 1883/34-1.

  3. Conflict of interest statement: J.G.K. is a shareholder of Voxalytic GmbH, a company that markets miniaturized NMR equipment. The other authors declare no conflicts of interest.

References

[1] J. Yang, Y. Wang, Z. Wang, et al.., “Observing quantum oscillation of ground states in single molecular magnet,” Phys. Rev. Lett., vol. 108, p. 230501, 2012, https://doi.org/10.1103/physrevlett.108.230501.Search in Google Scholar

[2] A. Matsumura, M. C. Emoto, S. Suzuki, et al.., “Evaluation of oxidative stress in the brain of a transgenic mouse model of alzheimer disease by in vivo electron paramagnetic resonance imaging,” Free Radic. Biol. Med., vol. 85, pp. 165–173, 2015, https://doi.org/10.1016/j.freeradbiomed.2015.04.013.Search in Google Scholar PubMed

[3] M. Azarkh, A. Bieber, M. Qi, et al.., “Gd(iii)–Gd(iii) relaxation-induced dipolar modulation enhancement for in-cell electron paramagnetic resonance distance determination,” J. Phys. Chem. Lett., vol. 10, no. 7, pp. 1477–1481, 2019, https://doi.org/10.1021/acs.jpclett.9b00340.Search in Google Scholar PubMed PubMed Central

[4] S. J. Fries, T. S. Braun, C. Globisch, C. Peter, M. Drescher, and E. Deuerling, “Deciphering molecular details of the rac–ribosome interaction by epr spectroscopy,” Sci. Rep., vol. 8681, 2021, https://doi.org/10.1038/s41598-021-87847-y.Search in Google Scholar PubMed PubMed Central

[5] M. Toybenshlak and R. Carmieli, “Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging,” Nat. Commun., vol. 1410, 2021.Search in Google Scholar

[6] T. Yalcin and G. Boero, “Single-chip detector for electron spin resonance spectroscopy,” Rev. Sci. Instrum., vol. 79, no. 9, p. 094105, 2008, https://doi.org/10.1063/1.2969657.Search in Google Scholar PubMed

[7] J. Anders, “Fully-integrated CMOS Probes for Magnetic Resonance Applications,” Ph.D. thesis, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2011.Search in Google Scholar

[8] J. Handwerker, B. Schlecker, U. Wachter, P. Radermacher, M. Ortmanns, and J. Anders, “A 14 GHz battery-operated point-of-care ESR spectrometer based on a 0.13 µm CMOS ASIC,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC), New Jersey, USA, Institute of Electrical and Electronics Engineers, 2016, pp. 476–477.10.1109/ISSCC.2016.7418114Search in Google Scholar

[9] A. Chu, B. Schlecker, K. Lips, M. Ortmanns, and J. Anders, “An 8-channel 13 GHz ESR-on-a-chip injection-locked VCO-array achieving 200 µM-concentration sensitivity,” in 2018 IEEE International Solid – State Circuits Conference – (ISSCC), New Jersey, USA, Institute of Electrical and Electronics Engineers, 2018, pp. 354–356.10.1109/ISSCC.2018.8310330Search in Google Scholar

[10] B. Schlecker, A. Hoffmann, A. Chu, M. Ortmanns, K. Lips, and J. Anders, “Towards low-cost, high-sensitivity point-of-care diagnostics using VCO-based ESR-on-a-chip detectors,” IEEE Sensor. J., vol. 19, no. 20, pp. 8995–9003, 2019, https://doi.org/10.1109/jsen.2018.2875767.Search in Google Scholar

[11] M. A. Hassan, T. Elrifai, A. Sakr, M. Kern, K. Lips, and J. Anders, “A 14-channel 7 GHz VCO-based EPR-on-a-chip sensor with rapid scan capabilities,” in 2021 IEEE Sensors, New Jersey, USA, Institute of Electrical and Electronics Engineers, 2021, pp. 1–4.10.1109/SENSORS47087.2021.9639513Search in Google Scholar

[12] M. Toybenshlak and R. Carmieli, “A new and robust method for in-situ EPR electrochemistry,” Isr. J. Chem., vol. 59, nos. 11–12, pp. 1020–1026, 2019, https://doi.org/10.1002/ijch.201900074.Search in Google Scholar

[13] J. Guo, X. Luan, Y. Tian, et al.., “The design of X-band EPR cavity with narrow detection aperture for in vivo fingernail dosimetry after accidental exposure to ionizing radiation,” Sci. Rep., vol. 2883, 2021, https://doi.org/10.1038/s41598-021-82462-3.Search in Google Scholar PubMed PubMed Central

[14] G. J. A. Schweiger, Principles of Pulse Electron Paramagnetic Resonance, New York, Oxford University Press, 2001.10.1093/oso/9780198506348.001.0001Search in Google Scholar

[15] J. Anders, “Nonlinear modeling of continuous-wave spin detection using oscillator-based ESR-on-a-chip sensors,” in Recent Advances in Nonlinear Dynamics and Synchronization: With Selected Applications in Electrical Engineering, Neurocomputing, and Transportation, K. Kyamakya, W. Mathis, R. Stoop, J. C. Chedjou, and Z. Li, Eds., Cham, Springer International Publishing, 2018, pp. 57–87.10.1007/978-3-319-58996-1_4Search in Google Scholar

[16] A. Chu, B. Schlecker, M. Kern, et al.., “On the modeling of amplitude-sensitive electron spin resonance ESR detection using voltage-controlled oscillator VCO-based ESR-on-a-chip detectors,” Magn. Reson., vol. 2, no. 2, pp. 699–713, 2021, https://doi.org/10.5194/mr-2-699-2021.Search in Google Scholar

[17] S. Künstner, A. Chu, K.-P. Dinse, et al.., “Rapid-scan electron paramagnetic resonance using an EPR-on-a-chip sensor,” Magn. Reson., vol. 2, no. 2, pp. 673–687, 2021, https://doi.org/10.5194/mr-2-673-2021.Search in Google Scholar

[18] A. Chu, B. Schlecker, J. Handwerker, et al.., “VCO-based ESR-on-a-chip as a tool for low-cost, high-sensitivity food quality control,” in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), New Jersey, USA, Institute of Electrical and Electronics Engineers, 2017, pp. 1–4.10.1109/BIOCAS.2017.8325172Search in Google Scholar

[19] A. Chu, B. Schlecker, and J. Anders, “Transistor-level simulation of LC-tank vco electron spin resonance detectors,” in ANALOG 2018; 16th GMM/ITG-Symposium, New Jersey, USA, Institute of Electrical and Electronics Engineers, 2018, pp. 1–2.Search in Google Scholar

[20] S. Pribitzer, A. Doll, and G. Jeschke, “Spidyan, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation,” J. Magn. Reson., vol. 263, pp. 45–54, 2016, https://doi.org/10.1016/j.jmr.2015.12.014.Search in Google Scholar PubMed

[21] S. Stoll and A. Schweiger, “Easyspin, a comprehensive software package for spectral simulation and analysis in EPR,” J. Magn. Reson., vol. 178, no. 1, pp. 42–55, 2006, https://doi.org/10.1016/j.jmr.2005.08.013.Search in Google Scholar PubMed

[22] P. E. Spindler, Y. Zhang, B. Endeward, et al.., “Shaped optimal control pulses for increased excitation bandwidth in EPR,” J. Magn. Reson., vol. 218, pp. 49–58, 2012, https://doi.org/10.1016/j.jmr.2012.02.013.Search in Google Scholar PubMed

[23] S. Stoll, Pulse EPR, New Jersey, USA, John Wiley & Sons, Ltd, 2017, pp. 23–38.10.1002/9780470034590.emrstm1510Search in Google Scholar

[24] G. Jeschke, “Deer distance measurements on proteins,” Annu. Rev. Phys. Chem., vol. 63, no. 1, pp. 419–446, 2012, https://doi.org/10.1146/annurev-physchem-032511-143716.Search in Google Scholar PubMed

[25] B. P. Lemke and D. Haneman, “Dangling bonds on silicon,” Phys. Rev. B, vol. 17, pp. 1893–1907, 1978, https://doi.org/10.1103/physrevb.17.1893.Search in Google Scholar

[26] M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, and K. Hiraga, “Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds,” IEEE Trans. Magn., vol. 20, no. 5, pp. 1584–1589, 1984, https://doi.org/10.1109/tmag.1984.1063214.Search in Google Scholar

[27] E. Keiji, “JEOL, NMR and ESR: a 65 year evolution,” J. Magn. Reson., vol. 306, pp. 17–26, 2019, https://doi.org/10.1016/j.jmr.2019.07.033.Search in Google Scholar PubMed

[28] V. Samofalov, D. Belozorov, and A. Ravlik, “Optimization of systems of permanent magnets,” Phys. Met. Metallogr., vol. 102, no. 5, pp. 494–505, 2006, https://doi.org/10.1134/s0031918x06110068.Search in Google Scholar

[29] J. Jensen and M. Abele, “Erratum:maximally efficient permanent magnet structures,” J. Appl. Phys., vol. 80, no. 3, p. 1941, 1996, https://doi.org/10.1063/1.363831.Search in Google Scholar

[30] M. L. Johns, E. O. Fridjonsson, S. J. Vogt, and A. Haber, Mobile NMR and MRI: Developments and Applications, London, UK, Royal Society of Chemistry, 2015.10.1039/9781782628095Search in Google Scholar

[31] K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods, vol. 169, no. 1, pp. 1–10, 1980, https://doi.org/10.1016/0029-554x(80)90094-4.Search in Google Scholar

[32] H. Raich and P. Blümler, “Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas,” Concepts Magn. Reson. Part B: Magn. Reson. Eng.: Educ. J., vol. 23, no. 1, pp. 16–25, 2004, https://doi.org/10.1002/cmr.b.20018.Search in Google Scholar

[33] M. Abele, “Generation of highly uniform fields with permanent magnets,” J. Appl. Phys., vol. 76, no. 10, pp. 6247–6252, 1994, https://doi.org/10.1063/1.358295.Search in Google Scholar

[34] K. Halbach, “Strong rare earth cobalt quadrupoles,” IEEE Trans. Nucl. Sci., vol. 26, no. 3, pp. 3882–3884, 1979, https://doi.org/10.1109/tns.1979.4330638.Search in Google Scholar

[35] K. Halbach, “Physical and optical properties of rare earth cobalt magnets,” Nucl. Instrum. Methods Phys. Res., vol. 187, no. 1, pp. 109–117, 1981, https://doi.org/10.1016/0029-554x(81)90477-8.Search in Google Scholar

Received: 2022-05-01
Accepted: 2022-08-01
Published Online: 2022-09-16
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.5.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2022-0096/html
Scroll to top button