Startseite Asymmetric CPW-fed hexagonal monopole antenna with Boomerang-shaped Fractals for ultra-wideband applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymmetric CPW-fed hexagonal monopole antenna with Boomerang-shaped Fractals for ultra-wideband applications

  • Muthu Ramya C. EMAIL logo und R. Boopathi Rani
Veröffentlicht/Copyright: 15. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In recent days, miniaturized antennas have gained significance in portable ultra-wideband (UWB) applications owing to its broad coverage spectrum. Fractal antennas have become popular in this context owing to the three properties: self-similarity, space-filling, and lacunarity, thereby producing miniaturization with a broad spectrum. Conventional Fractal antennas achieve a good impedance bandwidth, relatively high gain, at the cost of trade-off between compact size, radiation characteristics and broad spectrum. In this paper, an asymmetric coplanar waveguide–fed hexagonal monopole antenna with Boomerang-shaped Fractals is proposed for UWB characteristics with relatively high antenna gain and wide bandwidth. The miniaturization of the antenna is realized by the Fractal structure. The size of the antenna is to be 0.287 λ r × 0.287 λ r × 0.009 λ r, where λ r is the resonating wavelength at 3.45 GHz. The proposed antenna is printed on a 0.8-mm-thick FR-4 substrate with relative dielectric constant of 4.4 and a loss tangent of 0.02. From frequency-domain analysis, the experimental results reveal that the fractional bandwidth is 101.7% and the peak antenna gain detected is 5.1 dBi. The radiation performance of the antenna was nearly omnidirectional. From the time-domain analysis, group delay and three different Fidelity Factors i.e. Fidelity Factor (FF), System Fidelity Factor (SFF), and Fidelity Factor of System (FFS), the proposed antenna is found to have negligible distortion. As the bandwidth meets up to fractional bandwidth above 20% and absolute bandwidth greater than 500 MHz, the proposed antenna is suitable for 3.45–10.6 GHz UWB applications.


Corresponding author: Muthu Ramya C., Department of ECE, National Institute of Technology Puducherry, Karaikal 609 609, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Revision of Part 15 of the Commission’s Rules Regarding UltraWideband Transmission Systems,” Federal Communications Commission, 2017 [Online]. Available at: https://apps.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf [accessed: Aug. 24, 2017].Suche in Google Scholar

[2] J. B. B. Aucapina, R. A. L. Guartan, L. F. G. Vasquez, P. A. C. Pesantez, J. O. O. Ordonez, and P. E. Vintimilla-Tapia, “Recents designs of ultra wide band antennas Using fractal geometry: a review,” in 2018 IEEE Biennial Congress of Argentina (ARGENCON), IEEE, 2018, pp. 1–8.10.1109/ARGENCON.2018.8646154Suche in Google Scholar

[3] D. Stoyan. “Mandelbrot, BB, fractals: Form, chance, and dimension. San Francisco. W.H. Freeman and Company. 1977, 352 S., 68 Abb., $14.95,” Z. Angew. Math. Mech., vol. 59, pp. 402–403, 1979, https://doi.org/10.1002/zamm.19790590830.Suche in Google Scholar

[4] R. Ghatak, A. Karmakar, and D. R. Poddar, “Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality,” AEU Int. J. Electron. Commun., vol. 67, pp. 250–255, 2013, https://doi.org/10.1016/j.aeue.2012.08.007.Suche in Google Scholar

[5] S. Tripathi, A. Mohan, and S. Yadav, “Hexagonal fractal ultra‐wideband antenna using Koch geometry with bandwidth enhancement,” IET Microw. Antennas Propag., vol. 8, pp. 1445–1450, 2014, https://doi.org/10.1049/iet-map.2014.0326.Suche in Google Scholar

[6] D. Aissaoui, N. B. Hacen, and T. A. Denidni, “UWB hexagonal monopole fractal antenna with additional trapezoidal elements,” in 2015 IEEE Int. Conf. on Ubiquitous Wireless Broadband (ICUWB), IEEE, 2015, pp. 1–4.10.1109/ICUWB.2015.7324526Suche in Google Scholar

[7] D. Aissaoui, L. M. Abdelghani, N. Boukli‐Hacen, and T. A. Denidni, “CPW‐fed UWB hexagonal shaped antenna with additional fractal elements,” Microw. Opt. Technol. Lett., vol. 58, pp. 2370–2374, 2016, https://doi.org/10.1002/mop.30053.Suche in Google Scholar

[8] R. Kumar and P. N. Chaubey, “On the design of CPW-feed pentagonal-cut UWB fractal antenna,” Int. J. Microw. Opt. Technol., vol. 6, pp. 249–254, 2011.10.1049/iet-map.2011.0188Suche in Google Scholar

[9] R. Ghatak, A. Karmakar, and D. R. Poddar, “A circular shaped Sierpinski carpet fractal UWB monopole antenna with band rejection capability,” Prog. Electromagn. Res., vol. 24, pp. 221–234, 2011, https://doi.org/10.2528/pierc11082801.Suche in Google Scholar

[10] R. Ghatak, B. Biswas, A. Karmakar, and D. Poddar, “A circular fractal UWB antenna based on descartes circle theorem with band rejection capability,” Prog. Electromagn. Res. C, vol. 37, pp. 235–248, 2013, https://doi.org/10.2528/pierc13011607.Suche in Google Scholar

[11] R. K. Garg, M. V. D. Nair, S. Singhal, and R. Tomar, “A new type of compact ultra‐wideband planar fractal antenna with WLAN band rejection,” Microw. Opt. Technol. Lett., vol. 62, pp. 2537–2545, 2020, https://doi.org/10.1002/mop.32304.Suche in Google Scholar

[12] M. Gupta, and V. Mathur, “Wheel shaped modified fractal antenna realization for wireless communications,” AEU Int. J. Electron. Commun., vol. 79, pp. 257–266, 2017, https://doi.org/10.1016/j.aeue.2017.06.017.Suche in Google Scholar

[13] Y. K. Choukiker and S. K. Behera, “Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics,” IET Microw. Antennas Propag., vol. 8, pp. 506–512, 2014, https://doi.org/10.1049/iet-map.2013.0235.Suche in Google Scholar

[14] T. Ali, B. K. Subhash, and R. C. Biradar, “A miniaturized decagonal Sierpinski UWB fractal antenna,” Prog. Electromagn. Res. C, vol. 84, pp. 161–174, 2018, https://doi.org/10.2528/pierc18040605.Suche in Google Scholar

[15] K. P. Ray, M. D. Pandey, R. Rashmi, and S. P. Duttagupta, “Compact configurations of hexagonal microstrip antennas,” Microw. Opt. Technol. Lett., vol. 55, pp. 604–608, 2013, https://doi.org/10.1002/mop.27396.Suche in Google Scholar

[16] C. A. Balanis, Antenna Theory: Analysis and Design, 4th ed. Hoboken, NJ, John Wiley & Sons, 2015.Suche in Google Scholar

[17] M. R. Haji-hashemi, M. Moradian, and H. Mirmohammad-Sadeghi, “Space-filling patch antennas with CPW feed,” PIERS Online, vol. 2, pp. 69–73, 2006, https://doi.org/10.2529/piers050905035108.Suche in Google Scholar

[18] S. Singhal, P. Singh, and A. Kumar Singh, “Asymmetrically CPW‐fed octagonal Sierpinski UWB fractal antenna,” Microw. Opt. Technol. Lett., vol. 58, pp. 1738–1745, 2016, https://doi.org/10.1002/mop.29903.Suche in Google Scholar

[19] Ansoft Corp., HFSS, Ver. 14.0, Pittsburgh, PA, USA [Online]. Available at: http://www.ansys.com.Suche in Google Scholar

[20] CST Commercial Software Package. [Online]. Available at: http://www.cst.com.Suche in Google Scholar

[21] MATLAB Version R2019a. The MathWorks Inc., 2019 [Online]. Available at: http://www.mathworks.com.Suche in Google Scholar

[22] M. Koohestani, A. A. Moreira, and A. K. Skrivervik, “Fidelity concepts used in UWB systems,” in 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE, 2014, pp. 824–825.10.1109/APS.2014.6904740Suche in Google Scholar

[23] D. Lamensdorf and L. Susman, “Baseband-pulse-antenna techniques,” IEEE Antennas Wirel. Propag. Mag., vol. 36, no. 1, pp. 20–30, 1994, https://doi.org/10.1109/74.262629.Suche in Google Scholar

[24] R. B. Simorangkir, A. Kiourti, and K. P. Esselle, “UWB wearable antenna with a full ground plane based on PDMS-embedded conductive fabric,” IEEE Antenn. Wireless Propag. Lett., vol. 17, no. 3, pp. 493–496, 2018, https://doi.org/10.1109/lawp.2018.2797251.Suche in Google Scholar

[25] G. P. Gao, B. Hu, and J. S. Zhang, “Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method,” IEEE Antenn. Wireless Propag. Lett., vol. 12, pp. 567–570, 2013, https://doi.org/10.1109/lawp.2013.2259790.Suche in Google Scholar

Received: 2021-11-08
Accepted: 2022-03-28
Published Online: 2022-04-15
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0276/html?lang=de
Button zum nach oben scrollen