Startseite Miniaturized Band Stop FSS Using Convoluted Swastika Structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Miniaturized Band Stop FSS Using Convoluted Swastika Structure

  • Sridhar Bilvam EMAIL logo , Ramprabhu Sivasamy , Malathi Kanagasabai , Gulam Nabi Alsath M und Sanjay Baisakhiya
Veröffentlicht/Copyright: 28. Oktober 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 71 Heft 1-2

Abstract

This paper presents a miniaturized frequency selective surface (FSS) with stop band characteristics at the resonant frequency of 5.12 GHz. The unit cell size of the proposed FSS design is in the order of 0.095 λ×0.095 λ. The proposed unit cell is obtained by convoluting the arms of the basic swastika structure. The design provides fractional bandwidth of 9.0 % at the center frequency of 5.12 GHz in the 20 dB reference level of insertion loss. The symmetrical aspect of the design delivers identical response for both transverse electric (TE) and transverse magnetic (TM) modes thereby exhibiting polarization independent operation. The miniaturized design provides good angular independency for various incident angles. The dispersion analysis is done to substantiate the band stop operation of the convoluted swastika FSS. The proposed FSS is fabricated and its working is validated through measurements.

References

[1] B. A. Munk, Frequency Selective Surfaces-Theory and Design. New York: John Wiley, 2000.10.1002/0471723770Suche in Google Scholar

[2] R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces – a review,” Proc. IEEE, vol. 76, no. 12, pp. 1593–1615, 1988.10.1109/5.16352Suche in Google Scholar

[3] R. Mittra, C. H. Tsao, and W. L. Ko, “Frequency selective surfaces with applications in microwaves and optics,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 447–449, 1980.10.1109/MWSYM.1980.1124317Suche in Google Scholar

[4] K. Delihacıoğlu, “Chiral frequency selective surfaces comprised of multiple conducting strips per unit cell,” IET Microwaves, Antennas & Propagation, vol. 8, no. 9, pp. 621–626, 2014.10.1049/iet-map.2013.0146Suche in Google Scholar

[5] S. Zheng, Y. Yin, and X. Ren. “Interdigitated hexagon loop unit cells for wideband miniaturized frequency selective surfaces,” in IEEE 9th Int. Symp. Antennas Propag. EM Theory (ISAPE), 2010, pp. 770–772.10.1109/ISAPE.2010.5696582Suche in Google Scholar

[6] W. Li, et al. “A novel miniaturized band-pass frequency selective surface,” in IEEE 5th Global Symp. Millimeter Waves (GSMM 2012), 2012, pp. 245–248.10.1109/GSMM.2012.6314046Suche in Google Scholar

[7] E. A. Parker and A. N. A. El Sheikh, “Convoluted array elements and reduced size unit cells for frequency-selective surfaces,” IEE Pro. H Microw. Antennas Propag, vol. 138, no. 1, pp. 19–22, 1991.10.1049/ip-h-2.1991.0004Suche in Google Scholar

[8] B. Sanz-Izquierdo, E. A. Parker, J.-B. Robertson, and J. C. Batchelor, “Singly and dual polarized convoluted frequency selective structures,” IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 690–696, 2010.10.1109/TAP.2009.2039321Suche in Google Scholar

[9] Li.-H. Yang, et al. “A miniaturized frequency selective surface based on convoluted ring slot,” in IEEE 6th Asia-Pacific Conf. Environ. Electromagnetics (CEEM), 2012, pp. 63–66.10.1109/CEEM.2012.6410567Suche in Google Scholar

[10] E. A. Parker, A. N. A. El Sheikh, and A. Cd. Lima, “Convoluted frequency-selective array elements derived from linear and crossed dipoles,” IEE Pro. H Microw. Antennas Propag., vol. 140, no. 5, pp. 378–380, Oct. 1993.10.1049/ip-h-2.1993.0060Suche in Google Scholar

[11] Natarajan et al, “A compact frequency selective surface with stable response for WLAN applications,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 718–7208, 2013.10.1109/LAWP.2013.2264837Suche in Google Scholar

[12] T. Zhang, G.-H. Yang, W.-L. Li, Q. Jiang, and Q. Wu, “Research on novel miniaturized frequency selective surfaces consist of rectangle spiral-based elements,” in Global Mobile Congress (GMC), 2010, pp. 1–4.10.1109/GMC.2010.5634588Suche in Google Scholar

[13] A. L. P. S. Campos, E. E. C. de Oliveira, and P. H. F. Silva, “Miniaturization of frequency selective surfaces using fractal koch curves,” Microw. Opt. Technol. Lett., vol. 51, no. 8, pp. 1983–1986, 2009.10.1002/mop.24503Suche in Google Scholar

[14] A. L. P. S. Campos, E. E. C. de Oliveira, and P. H. F. Silva, “Design of miniaturized frequency selective surfaces using minkowski island fractal,” J. Microw. Optoelectron. Electromagn. Appl., vol. 9, no. 1, pp. 43–48, 2010.Suche in Google Scholar

[15] K. Sarabandi and N. Behdad, “A frequency selective surface with miniaturized elements,” IEEE Trans. Antennas Propag., vol. 55, no. 5, pp. 1239–1245, 2007.10.1109/TAP.2007.895567Suche in Google Scholar

[16] W. Li, et al, “A novel frequency selective surface with improved miniaturization performance,” J. Electromagn. Anal. Appl., vol. 4, pp. 108–111, 2012.10.4236/jemaa.2012.43014Suche in Google Scholar

[17] R. Sivasamy and M. Kanagasabai, “A novel dual-band angular independent FSS with closely spaced frequency response,” IEEE Microw. Wireless Compon. Lett., vol.25, no.5, pp. 298–300, May 2015.10.1109/LMWC.2015.2410591Suche in Google Scholar

[18] P. S. Taylor, A. C. M. Austin, E. A. Parker, M. J. Neve, J. C. Batchelor, J. T. Yiin, M. Leung, G. B. Rowe, A. G. Williamson, and K. W. Sowerby, “Angular independent frequency selective surfaces for interference control in indoor wireless environments,” Electron. Lett., vol. 48, no. 2, pp. 61–62, 2012.10.1049/el.2011.3359Suche in Google Scholar

[19] R. Sivasamy, M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and S. Palaniswamy, “A novel shield for GSM 1800 MHz band using frequency selective surface,” Prog. Electromagn. Res. Lett., vol. 38, pp. 193–199, 2013.10.2528/PIERL13022206Suche in Google Scholar

[20] S. Baisakhiya, R. Sivasamy, M. Kanagasabai, and S. Periaswamy, “Novel compact UWB frequency selective surface for angular and polarization independent operation,” Prog. Electromagn. Res. Lett., vol. 40, pp. 71–79, 2013.10.2528/PIERL13022707Suche in Google Scholar

[21] Z. L. Wang, K. Hashimoto, N. Shinohara, and H. Matsumoto, “Frequency selective surface for microwave power transmission,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 10, pp. 2039–2042, 1999.10.1109/22.795083Suche in Google Scholar

[22] Y. Yang, X.-H. Wang, and H. Zhou, “Dual-band frequency selective surface with miniaturized element in low frequencies,” Prog. Electromagn. Res. Lett., vol 33, pp. 167–175, 2012.10.2528/PIERL12070319Suche in Google Scholar

[23] P. Kovacs and Z. Raida, “Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation,” Radio Eng., vol. 19, no. 1, pp. 122–128, 2010.Suche in Google Scholar

Received: 2016-2-22
Published Online: 2016-10-28
Published in Print: 2017-1-1

©2017 by De Gruyter

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2016-0049/html
Button zum nach oben scrollen