Startseite Minimal Kähler submanifolds in product of space forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Minimal Kähler submanifolds in product of space forms

  • Alcides de Carvalho und Iury Domingos ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Juni 2023

Abstract

In this article, we study minimal isometric immersions of Kähler manifolds into product of two real space forms. We analyse the obstruction conditions to the existence of pluriharmonic isometric immersions of a Kähler manifold into those spaces and we prove that the only ones into 𝕊 m - 1 × and m - 1 × are the minimal isometric immersions of Riemannian surfaces. Furthermore, we show that the existence of a minimal isometric immersion of a Kähler manifold M 2 n into 𝕊 m - 1 × and 𝕊 m - k × k imposes strong restrictions on the Ricci and scalar curvatures of M 2 n . In this direction, we characterise some cases as either isometric immersions with parallel second fundamental form or anti-pluriharmonic isometric immersions.

MSC 2020: 53C42; 53B25; 32Q15

Communicated by Karin Melnick


Award Identifier / Grant number: 2019/177-0

Award Identifier / Grant number: G0H4518N

Funding statement: The first author was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant number 2019/177-0. The second author is partially supported by the Research Foundation-Flanders (FWO) and the Fonds de la Recherche Scientifique (FNRS), under EOS Project G0H4518N.

References

[1] Q. Chen and C. R. Xiang, Isometric immersions into warped product spaces, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 12, 2269–2282. 10.1007/s10114-010-0061-9Suche in Google Scholar

[2] M. Dajczer and D. Gromoll, Real Kaehler submanifolds and uniqueness of the Gauss map, J. Differential Geom. 22 (1985), no. 1, 13–28. 10.4310/jdg/1214439718Suche in Google Scholar

[3] M. Dajczer and L. Rodríguez, Rigidity of real Kaehler submanifolds, Duke Math. J. 53 (1986), no. 1, 211–220. 10.1215/S0012-7094-86-05314-7Suche in Google Scholar

[4] J.-H. Eschenburg and R. Tribuzy, Associated families of pluriharmonic maps and isotropy, Manuscripta Math. 95 (1998), no. 3, 295–310. 10.1007/s002290050030Suche in Google Scholar

[5] M. J. Ferreira, M. Rigoli and R. Tribuzy, Isometric immersions of Kähler manifolds, Rend. Semin. Mat. Univ. Padova 90 (1993), 25–38. Suche in Google Scholar

[6] D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), no. 1, 81–93. 10.1007/BF01359868Suche in Google Scholar

[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, Wiley Classics Lib., John Wiley & Sons, New York, 1996. Suche in Google Scholar

[8] M.-A. Lawn and J. Roth, A fundamental theorem for submanifolds of multiproducts of real space forms, Adv. Geom. 17 (2017), no. 3, 323–337. 10.1515/advgeom-2017-0021Suche in Google Scholar

[9] J. H. Lira, R. Tojeiro and F. Vitório, A Bonnet theorem for isometric immersions into products of space forms, Arch. Math. (Basel) 95 (2010), no. 5, 469–479. 10.1007/s00013-010-0183-4Suche in Google Scholar

[10] B. Mendonça and R. Tojeiro, Submanifolds of products of space forms, Indiana Univ. Math. J. 62 (2013), no. 4, 1283–1314. 10.1512/iumj.2013.62.5045Suche in Google Scholar

[11] C. A. D. Ribeiro and M. F. de Melo, A fundamental theorem for submanifolds in semi-Riemannian warped products, J. Geom. Phys. 144 (2019), 108–120. 10.1016/j.geomphys.2019.05.013Suche in Google Scholar

[12] M. Rettberg, Immersionen komplexer Mannigfaltigkeiten in einen euklidischen Raum, Thesis, Bielefeld, 1978. Suche in Google Scholar

[13] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385. 10.2969/jmsj/01840380Suche in Google Scholar

[14] S. Udagawa, Pluriharmonic maps and minimal immersions of Kähler manifolds, J. Lond. Math. Soc. (2) 37 (1988), no. 2, 375–384. 10.1112/jlms/s2-37.2.375Suche in Google Scholar

Received: 2022-10-27
Published Online: 2023-06-01
Published in Print: 2023-11-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0321/html?lang=de
Button zum nach oben scrollen