Abstract
We study almost Dedekind domains with respect to the failure of ideals to have radical factorization, that is, we study how to measure how far an almost Dedekind domain is from being an SP-domain. To do so, we consider the maximal space
References
[1] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Math. Surveys Monogr. 48, American Mathematical Society, Providence, 1997. 10.1090/surv/048Search in Google Scholar
[2] P. Conrad and D. McAlister, The completion of a lattice ordered group, J. Aust. Math. Soc. 9 (1969), 182–208. 10.1017/S1446788700005760Search in Google Scholar
[3] M. R. Darnel, Theory of Lattice-Ordered Groups, Monogr. Textb. Pure Appl. Math. 187, Marcel Dekker, New York, 1995. Search in Google Scholar
[4] M. Dickmann, N. Schwartz and M. Tressl, Spectral Spaces, New Math. Monogr. 35, Cambridge University, Cambridge, 2019. 10.1017/9781316543870Search in Google Scholar
[5] C. A. Finocchiaro and D. Spirito, Topology, intersections and flat modules, Proc. Amer. Math. Soc. 144 (2016), no. 10, 4125–4133. 10.1090/proc/13131Search in Google Scholar
[6] M. Fontana, E. Houston and T. Lucas, Factoring Ideals in Integral Domains, Lect. Notes Unione Mat. Ital. 14, Springer, Heidelberg, 2013. 10.1007/978-3-642-31712-5Search in Google Scholar
[7] M. Fontana and J. A. Huckaba, Localizing systems and semistar operations, Non-Noetherian Commutative Ring Theory, Math. Appl. 520, Kluwer Academic, Dordrecht (2000), 169–197. 10.1007/978-1-4757-3180-4_8Search in Google Scholar
[8] L. Fuchs, Abelian Groups, Springer Monogr. Math., Springer, Cham, 2015. 10.1007/978-3-319-19422-6Search in Google Scholar
[9]
J. M. García, P. Jara and E. Santos,
Prüfer
[10] R. Gilmer, Multiplicative Ideal Theory, Pure Appl. Math. 12, Marcel Dekker,New York, 1972. Search in Google Scholar
[11] R. W. Gilmer, Jr., Overrings of Prüfer domains, J. Algebra 4 (1966), 331–340. 10.1016/0021-8693(66)90025-1Search in Google Scholar
[12] O. A. Heubo-Kwegna, B. Olberding and A. Reinhart, Group-theoretic and topological invariants of completely integrally closed Prüfer domains, J. Pure Appl. Algebra 220 (2016), no. 12, 3927–3947. 10.1016/j.jpaa.2016.05.021Search in Google Scholar
[13] M. L. Knox and W. W. McGovern, Rigid extensions of l-groups of continuous functions, Czechoslovak Math. J. 58(133) (2008), no. 4, 993–1014. 10.1007/s10587-008-0064-1Search in Google Scholar
[14] A. Loper, Sequence domains and integer-valued polynomials, J. Pure Appl. Algebra 119 (1997), no. 2, 185–210. 10.1016/S0022-4049(96)00025-4Search in Google Scholar
[15] K. A. Loper, Almost Dedekind domains which are not Dedekind, Multiplicative Ideal Theory in Commutative Algebra, Springer, New York (2006), 279–292. 10.1007/978-0-387-36717-0_17Search in Google Scholar
[16] S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fundam. Math. 1 (1920), 17–27. 10.4064/fm-1-1-17-27Search in Google Scholar
[17] N. Nakano, Idealtheorie in einem speziellen unendlichen algebraischen Zahlkörper, J. Sci. Hiroshima Univ. Ser. A 16 (1953), 425–439. 10.32917/hmj/1557367271Search in Google Scholar
[18] G. Nöbeling, Verallgemeinerung eines Satzes von Herrn E. Specker, Invent. Math. 6 (1968), 41–55. 10.1007/BF01389832Search in Google Scholar
[19] D. G. Northcott and M. Reufel, A generalization of the concept of length, Quart. J. Math. Oxford Ser. (2) 16 (1965), 297–321. 10.1093/qmath/16.4.297Search in Google Scholar
[20] B. Olberding, Factorization into radical ideals, Arithmetical Properties of Commutative Rings and Monoids, Lect. Notes Pure Appl. Math. 241, Chapman & Hall/CRC, Boca Raton (2005), 363–377. 10.1201/9781420028249.ch25Search in Google Scholar
[21] L. Salce, P. Vámos and S. Virili, Length functions, multiplicities and algebraic entropy, Forum Math. 25 (2013), no. 2, 255–282. 10.1515/form.2011.117Search in Google Scholar
[22] L. Salce and S. Virili, The addition theorem for algebraic entropies induced by non-discrete length functions, Forum Math. 28 (2016), no. 6, 1143–1157. 10.1515/forum-2015-0118Search in Google Scholar
[23] E. Specker, Additive Gruppen von Folgen ganzer Zahlen, Portugal. Math. 9 (1950), 131–140. 10.1007/978-3-0348-9259-9_5Search in Google Scholar
[24] D. Spirito, Jaffard families and localizations of star operations, J. Commut. Algebra 11 (2019), no. 2, 265–300. 10.1216/JCA-2019-11-2-265Search in Google Scholar
[25] D. Spirito, Decomposition and classification of length functions, Forum Math. 32 (2020), no. 5, 1109–1129. 10.1515/forum-2018-0168Search in Google Scholar
[26] D. Spirito, The derived sequence of a pre-Jaffard family, Mediterr. J. Math. 19 (2022), no. 4, Paper No. 146. 10.1007/s00009-022-02028-zSearch in Google Scholar
[27] D. Spirito, Radical semistar operations, Comm. Algebra (2022), 10.1080/00927872.2022.2154784. 10.1080/00927872.2022.2154784Search in Google Scholar
[28] D. P. Strauss, Extremally disconnected spaces, Proc. Amer. Math. Soc. 18 (1967), 305–309. 10.1090/S0002-9939-1967-0210066-0Search in Google Scholar
[29] P. Vámos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) 19 (1968), 43–55. 10.1093/qmath/19.1.43Search in Google Scholar
[30] N. H. Vaughan and R. W. Yeagy, Factoring ideals into semiprime ideals, Canad. J. Math. 30 (1978), no. 6, 1313–1318. 10.4153/CJM-1978-108-5Search in Google Scholar
[31] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra 3 (2011), no. 4, 561–587. 10.1216/JCA-2011-3-4-561Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- On the asymptotics of the shifted sums of Hecke eigenvalue squares
- On the splitting conjecture in the hybrid model for the Riemann zeta function
- Almost Dedekind domains without radical factorization
- Groups in which the centralizer of any non-central primary element is maximal
- GKM actions on cohomogeneity one manifolds
- Gruenberg–Kegel graphs: Cut groups, rational groups and the prime graph question
- Sobolev regularity for nonlinear Poisson equations with Neumann boundary conditions on Riemannian manifolds
- Higher differentiability for bounded solutions to a class of obstacle problems with (p,q)-growth
- Measures of noncompactness of interpolated polynomials
- The homotopy category of acyclic complexes of pure-projective modules
- The Gelfand–Kirillov dimension of Hecke–Kiselman algebras
- Sharp Li–Yau inequalities for Dunkl harmonic oscillators
- A Shimura–Shintani correspondence for rigid analytic cocycles of higher weight
- Free polynilpotent groups and the Magnus property
Articles in the same Issue
- Frontmatter
- On the asymptotics of the shifted sums of Hecke eigenvalue squares
- On the splitting conjecture in the hybrid model for the Riemann zeta function
- Almost Dedekind domains without radical factorization
- Groups in which the centralizer of any non-central primary element is maximal
- GKM actions on cohomogeneity one manifolds
- Gruenberg–Kegel graphs: Cut groups, rational groups and the prime graph question
- Sobolev regularity for nonlinear Poisson equations with Neumann boundary conditions on Riemannian manifolds
- Higher differentiability for bounded solutions to a class of obstacle problems with (p,q)-growth
- Measures of noncompactness of interpolated polynomials
- The homotopy category of acyclic complexes of pure-projective modules
- The Gelfand–Kirillov dimension of Hecke–Kiselman algebras
- Sharp Li–Yau inequalities for Dunkl harmonic oscillators
- A Shimura–Shintani correspondence for rigid analytic cocycles of higher weight
- Free polynilpotent groups and the Magnus property