Home Mathematics Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
Article
Licensed
Unlicensed Requires Authentication

Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type

  • Shaoyong He EMAIL logo and Jiecheng Chen
Published/Copyright: December 1, 2021

Abstract

The purpose of this paper is to establish a necessary and sufficient condition for the boundedness of general product singular integral operators introduced by Han, Li and Lin [Y. Han, J. Li and C.-C. Lin, Criterion of the L2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 2016, 3, 845–907] on the multiparameter Lipschitz spaces of homogeneous type M~=M1××Mn. Each factor space Mi, 1in, is a space of homogeneous type in the sense of Coifman and Weiss. These operators generalize those studied by Journé on the Euclidean space and include operators studied by Nagel and Stein on Carnot–Carathéodory spaces. The main tool used here is the discrete Littlewood–Paley–Stein theory and almost orthogonality together with a density argument for the product Lipschitz spaces in the weak sense.

MSC 2010: 42B20; 42B25; 46E35

Communicated by Christopher D. Sogge


Award Identifier / Grant number: LQ22A010018

Award Identifier / Grant number: 12071437

Funding statement: This research was funded by Natural Science Foundation of Zhejiang Province (Grant number LQ22A010018) and National Natural Science Foundation of China (Grant number 12071437).

References

[1] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. 10.4064/sm-24-2-113-190Search in Google Scholar

[2] S.-Y. A. Chang and R. Fefferman, A continuous version of duality of H1 with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201. 10.2307/1971324Search in Google Scholar

[3] S.-Y. A. Chang and R. Fefferman, The Calderón–Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468. 10.2307/2374150Search in Google Scholar

[4] S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc. (N. S.) 12 (1985), no. 1, 1–43. 10.1090/S0273-0979-1985-15291-7Search in Google Scholar

[5] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. 10.1007/s000390050094Search in Google Scholar

[6] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. 10.4064/cm-60-61-2-601-628Search in Google Scholar

[7] G. David, J.-L. Journé and S. Semmes, Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam. 1 (1985), no. 4, 1–56. 10.4171/RMI/17Search in Google Scholar

[8] D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Math. 1966, Springer, Berlin, 2009. 10.1007/978-3-540-88745-4Search in Google Scholar

[9] W. Ding and G. Lu, Boundedness of inhomogeneous Journé’s type operators on multi-parameter local Hardy spaces, Nonlinear Anal. 197 (2020), Article ID 111816. 10.1016/j.na.2020.111816Search in Google Scholar

[10] W. Ding, G. Lu and Y. Zhu, Discrete Littlewood–Paley–Stein characterization of multi-parameter local Hardy spaces, Forum Math. 31 (2019), no. 6, 1467–1488. 10.1515/forum-2019-0038Search in Google Scholar

[11] W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 (2019), 352–380. 10.1016/j.na.2019.02.014Search in Google Scholar

[12] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. 10.2307/1971346Search in Google Scholar

[13] R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369. 10.1353/ajm.1997.0011Search in Google Scholar

[14] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. 10.1016/S0001-8708(82)80001-7Search in Google Scholar

[15] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 10.1016/0022-1236(90)90137-ASearch in Google Scholar

[16] R. F. Gundy and E. M. Stein, Hp theory for the poly-disc, Proc. Natl. Acad. Sci. USA 76 (1979), no. 3, 1026–1029. 10.1073/pnas.76.3.1026Search in Google Scholar PubMed PubMed Central

[17] Y. Han and Y. Han, Boundedness of composition operators associated with mixed homogeneities on Lipschitz spaces, Math. Res. Lett. 23 (2016), no. 5, 1387–1403. 10.4310/MRL.2016.v23.n5.a7Search in Google Scholar

[18] Y. Han, Y. Han, J. Li and C. Tan, Marcinkiewicz multipliers and Lipschitz spaces on Heisenberg groups, Canad. J. Math. 71 (2019), no. 3, 607–627. 10.4153/CJM-2018-003-0Search in Google Scholar

[19] Y. Han, M.-Y. Lee, C.-C. Lin and Y.-C. Lin, Calderón–Zygmund operators on product Hardy spaces, J. Funct. Anal. 258 (2010), no. 8, 2834–2861. 10.1016/j.jfa.2009.10.022Search in Google Scholar

[20] Y. Han, J. Li and C.-C. Lin, Criterion of the L2 boundedness and sharp endpoint estimates for singular integral operators on product spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 3, 845–907. 10.2422/2036-2145.201411_002Search in Google Scholar

[21] Y. Han, J. Li, C.-C. Lin and C. Tan, Singular integrals associated with Zygmund dilations, J. Geom. Anal. 29 (2019), no. 3, 2410–2455. 10.1007/s12220-018-0081-8Search in Google Scholar

[22] Y. Han, J. Li and G. Lu, Multiparameter Hardy space theory on Carnot–Carathéodory spaces and product spaces of homogeneous type, Trans. Amer. Math. Soc. 365 (2013), no. 1, 319–360. 10.1090/S0002-9947-2012-05638-8Search in Google Scholar

[23] Y. Han, G. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE 7 (2014), no. 7, 1465–1534. 10.2140/apde.2014.7.1465Search in Google Scholar

[24] Y. Han, D. Müller and D. Yang, Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), no. 13–14, 1505–1537. 10.1002/mana.200610435Search in Google Scholar

[25] Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces, Abstr. Appl. Anal. 2008 (2008), Article ID 893409. 10.1155/2008/893409Search in Google Scholar

[26] E. Harboure, O. Salinas and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 (1997), no. 1, 235–255. 10.1090/S0002-9947-97-01644-9Search in Google Scholar

[27] S. He and J. Chen, Boundedness of multi-parameter pseudo-differential operators on multi-parameter Lipschitz spaces, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 4, 1665–1683. 10.1007/s11868-020-00362-ySearch in Google Scholar

[28] S. He and J. Chen, Three-parameter Hardy spaces associated with a sum of two flag singular integrals, Banach J. Math. Anal. 14 (2020), no. 4, 1363–1386. 10.1007/s43037-020-00067-wSearch in Google Scholar

[29] S. He and J. Chen, Inhomogeneous Lipschitz spaces associated with flag singular integrals and their applications, Math. Inequal. Appl. 24 (2021), no. 4, 965–987. 10.7153/mia-2021-24-67Search in Google Scholar

[30] S. He and J. Chen, Mixed Lipschitz spaces and their applications, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 2, 1–25. 10.1007/s10473-022-0217-6Search in Google Scholar

[31] J.-L. Journé, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91. 10.4171/RMI/15Search in Google Scholar

[32] S. G. Krantz, Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups, J. Funct. Anal. 34 (1979), no. 3, 456–471. 10.1016/0022-1236(79)90087-9Search in Google Scholar

[33] S. G. Krantz, Lipschitz spaces on stratified groups, Trans. Amer. Math. Soc. 269 (1982), no. 1, 39–66. 10.1090/S0002-9947-1982-0637028-6Search in Google Scholar

[34] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge University, Cambridge, 1992. Search in Google Scholar

[35] D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), no. 2, 199–233. 10.1007/BF02622116Search in Google Scholar

[36] D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), no. 2, 267–291. 10.1007/BF02622116Search in Google Scholar

[37] A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal. 181 (2001), no. 1, 29–118. 10.1006/jfan.2000.3714Search in Google Scholar

[38] A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Singular integrals with flag kernels on homogeneous groups. I, Rev. Mat. Iberoam. 28 (2012), no. 3, 631–722. 10.4171/RMI/688Search in Google Scholar

[39] A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Algebras of singular integral operators with kernels controlled by multiple norms, Mem. Amer. Math. Soc. 256 (2018), 1–141. 10.1090/memo/1230Search in Google Scholar

[40] A. Nagel and E. M. Stein, The b-heat equation on pseudoconvex manifolds of finite type in 2, Math. Z. 238 (2001), no. 1, 37–88. 10.1007/PL00004901Search in Google Scholar

[41] A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoam. 20 (2004), no. 2, 531–561. 10.4171/RMI/400Search in Google Scholar

[42] A. Nagel and E. M. Stein, The ¯b-complex on decoupled boundaries in n, Ann. of Math. (2) 164 (2006), no. 2, 649–713. 10.4007/annals.2006.164.649Search in Google Scholar

[43] J. Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. 10.1215/S0012-7094-86-05337-8Search in Google Scholar

[44] F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 637–670. Z. Ruan, Multi-parameter Hardy spaces via discrete Littlewood–Paley theory, Anal. Theory Appl. 26 (2010), no. 2, 122–139. 10.5802/aif.1304Search in Google Scholar

[45] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. 10.2307/2374799Search in Google Scholar

[46] T. Zheng, J. Chen, J. Dai, S. He and X. Tao, Calderón–Zygmund operators on homogeneous product Lipschitz spaces, J. Geom. Anal. 31 (2021), no. 2, 2033–2057. 10.1007/s12220-019-00331-ySearch in Google Scholar

Received: 2021-08-08
Published Online: 2021-12-01
Published in Print: 2022-01-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0204/html
Scroll to top button