Abstract
The purpose of this paper is to establish a necessary and sufficient condition for the boundedness of general product singular integral operators
introduced by Han, Li and Lin
[Y. Han, J. Li and C.-C. Lin,
Criterion of the
Funding source: Natural Science Foundation of Zhejiang Province
Award Identifier / Grant number: LQ22A010018
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12071437
Funding statement: This research was funded by Natural Science Foundation of Zhejiang Province (Grant number LQ22A010018) and National Natural Science Foundation of China (Grant number 12071437).
References
[1] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. 10.4064/sm-24-2-113-190Search in Google Scholar
[2]
S.-Y. A. Chang and R. Fefferman,
A continuous version of duality of
[3] S.-Y. A. Chang and R. Fefferman, The Calderón–Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468. 10.2307/2374150Search in Google Scholar
[4]
S.-Y. A. Chang and R. Fefferman,
Some recent developments in Fourier analysis and
[5] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. 10.1007/s000390050094Search in Google Scholar
[6]
M. Christ,
A
[7] G. David, J.-L. Journé and S. Semmes, Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam. 1 (1985), no. 4, 1–56. 10.4171/RMI/17Search in Google Scholar
[8] D. Deng and Y. Han, Harmonic Analysis on Spaces of Homogeneous Type, Lecture Notes in Math. 1966, Springer, Berlin, 2009. 10.1007/978-3-540-88745-4Search in Google Scholar
[9] W. Ding and G. Lu, Boundedness of inhomogeneous Journé’s type operators on multi-parameter local Hardy spaces, Nonlinear Anal. 197 (2020), Article ID 111816. 10.1016/j.na.2020.111816Search in Google Scholar
[10] W. Ding, G. Lu and Y. Zhu, Discrete Littlewood–Paley–Stein characterization of multi-parameter local Hardy spaces, Forum Math. 31 (2019), no. 6, 1467–1488. 10.1515/forum-2019-0038Search in Google Scholar
[11] W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, Nonlinear Anal. 184 (2019), 352–380. 10.1016/j.na.2019.02.014Search in Google Scholar
[12] R. Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. 10.2307/1971346Search in Google Scholar
[13] R. Fefferman and J. Pipher, Multiparameter operators and sharp weighted inequalities, Amer. J. Math. 119 (1997), no. 2, 337–369. 10.1353/ajm.1997.0011Search in Google Scholar
[14] R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143. 10.1016/S0001-8708(82)80001-7Search in Google Scholar
[15] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. 10.1016/0022-1236(90)90137-ASearch in Google Scholar
[16]
R. F. Gundy and E. M. Stein,
[17] Y. Han and Y. Han, Boundedness of composition operators associated with mixed homogeneities on Lipschitz spaces, Math. Res. Lett. 23 (2016), no. 5, 1387–1403. 10.4310/MRL.2016.v23.n5.a7Search in Google Scholar
[18] Y. Han, Y. Han, J. Li and C. Tan, Marcinkiewicz multipliers and Lipschitz spaces on Heisenberg groups, Canad. J. Math. 71 (2019), no. 3, 607–627. 10.4153/CJM-2018-003-0Search in Google Scholar
[19] Y. Han, M.-Y. Lee, C.-C. Lin and Y.-C. Lin, Calderón–Zygmund operators on product Hardy spaces, J. Funct. Anal. 258 (2010), no. 8, 2834–2861. 10.1016/j.jfa.2009.10.022Search in Google Scholar
[20]
Y. Han, J. Li and C.-C. Lin,
Criterion of the
[21] Y. Han, J. Li, C.-C. Lin and C. Tan, Singular integrals associated with Zygmund dilations, J. Geom. Anal. 29 (2019), no. 3, 2410–2455. 10.1007/s12220-018-0081-8Search in Google Scholar
[22] Y. Han, J. Li and G. Lu, Multiparameter Hardy space theory on Carnot–Carathéodory spaces and product spaces of homogeneous type, Trans. Amer. Math. Soc. 365 (2013), no. 1, 319–360. 10.1090/S0002-9947-2012-05638-8Search in Google Scholar
[23] Y. Han, G. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, Anal. PDE 7 (2014), no. 7, 1465–1534. 10.2140/apde.2014.7.1465Search in Google Scholar
[24] Y. Han, D. Müller and D. Yang, Littlewood–Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), no. 13–14, 1505–1537. 10.1002/mana.200610435Search in Google Scholar
[25] Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces, Abstr. Appl. Anal. 2008 (2008), Article ID 893409. 10.1155/2008/893409Search in Google Scholar
[26] E. Harboure, O. Salinas and B. Viviani, Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces, Trans. Amer. Math. Soc. 349 (1997), no. 1, 235–255. 10.1090/S0002-9947-97-01644-9Search in Google Scholar
[27] S. He and J. Chen, Boundedness of multi-parameter pseudo-differential operators on multi-parameter Lipschitz spaces, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 4, 1665–1683. 10.1007/s11868-020-00362-ySearch in Google Scholar
[28] S. He and J. Chen, Three-parameter Hardy spaces associated with a sum of two flag singular integrals, Banach J. Math. Anal. 14 (2020), no. 4, 1363–1386. 10.1007/s43037-020-00067-wSearch in Google Scholar
[29] S. He and J. Chen, Inhomogeneous Lipschitz spaces associated with flag singular integrals and their applications, Math. Inequal. Appl. 24 (2021), no. 4, 965–987. 10.7153/mia-2021-24-67Search in Google Scholar
[30] S. He and J. Chen, Mixed Lipschitz spaces and their applications, Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 2, 1–25. 10.1007/s10473-022-0217-6Search in Google Scholar
[31] J.-L. Journé, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91. 10.4171/RMI/15Search in Google Scholar
[32] S. G. Krantz, Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups, J. Funct. Anal. 34 (1979), no. 3, 456–471. 10.1016/0022-1236(79)90087-9Search in Google Scholar
[33] S. G. Krantz, Lipschitz spaces on stratified groups, Trans. Amer. Math. Soc. 269 (1982), no. 1, 39–66. 10.1090/S0002-9947-1982-0637028-6Search in Google Scholar
[34] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge University, Cambridge, 1992. Search in Google Scholar
[35] D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. I, Invent. Math. 119 (1995), no. 2, 199–233. 10.1007/BF02622116Search in Google Scholar
[36] D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups. II, Math. Z. 221 (1996), no. 2, 267–291. 10.1007/BF02622116Search in Google Scholar
[37] A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds, J. Funct. Anal. 181 (2001), no. 1, 29–118. 10.1006/jfan.2000.3714Search in Google Scholar
[38] A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Singular integrals with flag kernels on homogeneous groups. I, Rev. Mat. Iberoam. 28 (2012), no. 3, 631–722. 10.4171/RMI/688Search in Google Scholar
[39] A. Nagel, F. Ricci, E. M. Stein and S. Wainger, Algebras of singular integral operators with kernels controlled by multiple norms, Mem. Amer. Math. Soc. 256 (2018), 1–141. 10.1090/memo/1230Search in Google Scholar
[40]
A. Nagel and E. M. Stein,
The
[41] A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoam. 20 (2004), no. 2, 531–561. 10.4171/RMI/400Search in Google Scholar
[42]
A. Nagel and E. M. Stein,
The
[43] J. Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. 10.1215/S0012-7094-86-05337-8Search in Google Scholar
[44] F. Ricci and E. M. Stein, Multiparameter singular integrals and maximal functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 637–670. Z. Ruan, Multi-parameter Hardy spaces via discrete Littlewood–Paley theory, Anal. Theory Appl. 26 (2010), no. 2, 122–139. 10.5802/aif.1304Search in Google Scholar
[45] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. 10.2307/2374799Search in Google Scholar
[46] T. Zheng, J. Chen, J. Dai, S. He and X. Tao, Calderón–Zygmund operators on homogeneous product Lipschitz spaces, J. Geom. Anal. 31 (2021), no. 2, 2033–2057. 10.1007/s12220-019-00331-ySearch in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contramodules over pro-perfect topological rings
- Multigraded Castelnuovo–Mumford regularity via Klyachko filtrations
- Resistance scaling on 4N-carpets
- Newton polygons for L-functions of generalized Kloosterman sums
- Embeddings of locally compact abelian p-groups in Hawaiian groups
- A theorem of Roe and Strichartz on homogeneous trees
- Hankel determinants for starlike and convex functions associated with sigmoid functions
- Modular iterated integrals associated with cusp forms
- Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
- Gompf connected sum for orbifolds and K-contact Smale–Barden manifolds
- Upper estimates of heat kernels for non-local Dirichlet forms on doubling spaces
Articles in the same Issue
- Frontmatter
- Contramodules over pro-perfect topological rings
- Multigraded Castelnuovo–Mumford regularity via Klyachko filtrations
- Resistance scaling on 4N-carpets
- Newton polygons for L-functions of generalized Kloosterman sums
- Embeddings of locally compact abelian p-groups in Hawaiian groups
- A theorem of Roe and Strichartz on homogeneous trees
- Hankel determinants for starlike and convex functions associated with sigmoid functions
- Modular iterated integrals associated with cusp forms
- Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
- Gompf connected sum for orbifolds and K-contact Smale–Barden manifolds
- Upper estimates of heat kernels for non-local Dirichlet forms on doubling spaces