Abstract
The
Funding source: National Science Foundation
Award Identifier / Grant number: DMS REU 1659643
Funding statement: The research was supported by NSF DMS REU 1659643.
References
[1] U. A. Andrews, IV, Existence of diffusions on 4N carpets, PhD thesis, University of Connecticut, 2017. Search in Google Scholar
[2] M. T. Barlow, Diffusions on fractals, Lectures on Probability Theory and Statistics (Saint-Flour 1995), Lecture Notes in Math. 1690, Springer, Berlin (1998), 1–121. 10.1007/BFb0092537Search in Google Scholar
[3] M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. Henri Poincaré Probab. Stat. 25 (1989), no. 3, 225–257. Search in Google Scholar
[4] M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. Lond. Ser. A 431 (1990), no. 1882, 345–360. 10.1098/rspa.1990.0135Search in Google Scholar
[5] M. T. Barlow and R. F. Bass, Transition densities for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields 91 (1992), no. 3–4, 307–330. 10.1007/BF01192060Search in Google Scholar
[6] M. T. Barlow and R. F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4, 673–744. 10.4153/CJM-1999-031-4Search in Google Scholar
[7] M. T. Barlow, R. F. Bass, T. Kumagai and A. Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655–701. 10.4171/JEMS/211Search in Google Scholar
[8] M. T. Barlow, R. F. Bass and J. D. Sherwood, Resistance and spectral dimension of Sierpiński carpets, J. Phys. A 23 (1990), no. 6, L253–L258. 10.1088/0305-4470/23/6/004Search in Google Scholar
[9] T. Berry, S. M. Heilman and R. S. Strichartz, Outer approximation of the spectrum of a fractal Laplacian, Exp. Math. 18 (2009), no. 4, 449–480. 10.1080/10586458.2009.10129061Search in Google Scholar
[10] R. Brown, The mixed problem for Laplace’s equation in a class of Lipschitz domains, Comm. Partial Differential Equations 19 (1994), no. 7–8, 1217–1233. 10.1080/03605309408821052Search in Google Scholar
[11] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Carus Math. Monogr. 22, Mathematical Association of America, Washington, 1984. 10.5948/UPO9781614440222Search in Google Scholar
[12] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, 1992. Search in Google Scholar
[13] A. Grigor’yan and M. Yang, Local and non-local Dirichlet forms on the Sierpiński carpet, Trans. Amer. Math. Soc. 372 (2019), no. 6, 3985–4030. 10.1090/tran/7753Search in Google Scholar
[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011. 10.1137/1.9781611972030Search in Google Scholar
[15] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. 10.1512/iumj.1981.30.30055Search in Google Scholar
[16] N. Kajino, Spectral asymptotics for Laplacians on self-similar sets, J. Funct. Anal. 258 (2010), no. 4, 1310–1360. 10.1016/j.jfa.2009.11.001Search in Google Scholar
[17] N. Kajino, An elementary proof of walk dimension being greater than two for Brownian motion on Sierpiński carpets, preprint (2020), https://arxiv.org/abs/2005.02524. Search in Google Scholar
[18] D. J. Kelleher, H. Panzo, A. Brzoska and A. Teplyaev, Dual graphs and modified Barlow–Bass resistance estimates for repeated barycentric subdivisions, Discrete Contin. Dyn. Syst. Ser. S 12 (2019), no. 1, 27–42. 10.3934/dcdss.2019002Search in Google Scholar
[19] J. Kigami, Analysis on Fractals, Cambridge Tracts in Math. 143, Cambridge University, Cambridge, 2001. 10.1017/CBO9780511470943Search in Google Scholar
[20] I. McGillivray, Resistance in higher-dimensional Sierpiński carpets, Potential Anal. 16 (2002), no. 3, 289–303. 10.1023/A:1014035414658Search in Google Scholar
[21] D. Molitor, N. Ott and R. Strichartz, Using Peano curves to construct Laplacians on fractals, Fractals 23 (2015), no. 4, Article ID 1550048. 10.1142/S0218348X15500486Search in Google Scholar
[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University, Princeton, 1970. 10.1515/9781400883882Search in Google Scholar
[23] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, New York, 1989. 10.1007/978-1-4612-1015-3Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contramodules over pro-perfect topological rings
- Multigraded Castelnuovo–Mumford regularity via Klyachko filtrations
- Resistance scaling on 4N-carpets
- Newton polygons for L-functions of generalized Kloosterman sums
- Embeddings of locally compact abelian p-groups in Hawaiian groups
- A theorem of Roe and Strichartz on homogeneous trees
- Hankel determinants for starlike and convex functions associated with sigmoid functions
- Modular iterated integrals associated with cusp forms
- Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
- Gompf connected sum for orbifolds and K-contact Smale–Barden manifolds
- Upper estimates of heat kernels for non-local Dirichlet forms on doubling spaces
Articles in the same Issue
- Frontmatter
- Contramodules over pro-perfect topological rings
- Multigraded Castelnuovo–Mumford regularity via Klyachko filtrations
- Resistance scaling on 4N-carpets
- Newton polygons for L-functions of generalized Kloosterman sums
- Embeddings of locally compact abelian p-groups in Hawaiian groups
- A theorem of Roe and Strichartz on homogeneous trees
- Hankel determinants for starlike and convex functions associated with sigmoid functions
- Modular iterated integrals associated with cusp forms
- Calderón–Zygmund operators on multiparameter Lipschitz spaces of homogeneous type
- Gompf connected sum for orbifolds and K-contact Smale–Barden manifolds
- Upper estimates of heat kernels for non-local Dirichlet forms on doubling spaces