Startseite A class of non-weight modules of 𝑈𝑝(𝖘𝖑2) and Clebsch–Gordan type formulas
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A class of non-weight modules of 𝑈𝑝(𝖘𝖑2) and Clebsch–Gordan type formulas

  • Yan-an Cai , Hongjia Chen , Xiangqian Guo EMAIL logo , Yao Ma und Mianmian Zhu
VerÜffentlicht/Copyright: 21. März 2021

Abstract

In this paper, we construct a class of new modules for the quantum group Uq⁢(s⁢l2) which are free of rank 1 when restricted to C⁢[K±1]. The irreducibility of these modules and submodule structure for reducible ones are determined. It is proved that any C⁢[K±1]-free Uq⁢(s⁢l2)-module of rank 1 is isomorphic to one of the modules we constructed, and their isomorphism classes are obtained. We also investigate the tensor products of the C⁢[K±1]-free modules with finite-dimensional simple modules over Uq⁢(s⁢l2), and for the generic cases, we obtain direct sum decomposition formulas for them, which are similar to the well-known Clebsch–Gordan formula for tensor products between finite-dimensional weight modules over Uq⁢(s⁢l2).

MSC 2010: 17B37; 20G42; 81R50

Award Identifier / Grant number: 2016M600140

Award Identifier / Grant number: 11801390

Award Identifier / Grant number: 11771410

Award Identifier / Grant number: 11931009

Award Identifier / Grant number: 11971440

Award Identifier / Grant number: 11801066

Funding statement: Y. Cai is partially supported by the China Postdoctoral Science Foundation (Grant 2016M600140) the NSF of China (Grant 11801390) and High-level Innovation and Entrepreneurship Talents Introduction Program of Jiangsu Province of China. H. Chen is partially supported by the NSF of China (Grants 11771410 and 11931009) and Anhui Initiative in Quantum Information Technologies (Grant AHY150000). X. Guo is partially supported by the NSF of China (Grant 11971440). Y. Ma is partially supported by the NSF of China (Grant 11801066).

Acknowledgements

The authors would like to thank the referee for valuable suggestions to improve the paper.

  1. Communicated by: Jan Frahm

References

[1] H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of Quantum Groups at a 𝑝th Root of Unity and of Semisimple Groups in Characteristic 𝑝: Independence of 𝑝, Astérisque 220, Société Mathématique de France, Paris, 1994. Suche in Google Scholar

[2] R. Bezrukavnikov, I. Mirković and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991. 10.4007/annals.2008.167.945Suche in Google Scholar

[3] K. A. Brown and I. Gordon, The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, Math. Z. 238 (2001), no. 4, 733–779. 10.1007/s002090100274Suche in Google Scholar

[4] C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris 1989), Progr. Math. 92, Birkhäuser, Boston (1990), 471–506. Suche in Google Scholar

[5] V. G. Drinfel’d, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258. 10.1142/9789812798336_0013Suche in Google Scholar

[6] V. G. Drinfel’d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2, American Mathematical Society, Providence (1987), 798–820. 10.1142/9789812798336_0014Suche in Google Scholar

[7] Y. He, Y.-a. Cai and R. Lü, A class of new simple modules for s⁢ln+1 and the Witt algebra, J. Algebra 541 (2020), 415–435. 10.1016/j.jalgebra.2019.09.011Suche in Google Scholar

[8] J. C. Jantzen, Lectures on Quantum Groups, Grad. Stud. Math. 6, American Mathematical Society, Providence, 1996. 10.1090/gsm/006Suche in Google Scholar

[9] M. Jimbo, A 𝑞-difference analogue of U⁢(g) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69. 10.1007/BF00704588Suche in Google Scholar

[10] C. Kassel, Quantum Groups, Grad. Texts in Math. 155, Springer, New York, 1995. 10.1007/978-1-4612-0783-2Suche in Google Scholar

[11] G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70 (1988), no. 2, 237–249. 10.1016/0001-8708(88)90056-4Suche in Google Scholar

[12] G. Lusztig, Modular representations and quantum groups, Classical Groups and Related Topics (Beijing 1987), Contemp. Math. 82, American Mathematical Society, Providence (1989), 59–77. 10.1090/conm/082/982278Suche in Google Scholar

[13] G. Lusztig, Introduction to Quantum Groups, Progr. Math. 110, Birkhäuser, Boston, 1993. Suche in Google Scholar

[14] Y. Ma, Research on non-weight modules over quantum groups Uq⁢(s⁢l2) and Uq⁢(s⁢l3), Postdoctoral Fellowship Final Report, USTC, 2017. Suche in Google Scholar

[15] J. Nilsson, Simple s⁢ln+1-module structures on U⁢(h), J. Algebra 424 (2015), 294–329. 10.1016/j.jalgebra.2014.09.036Suche in Google Scholar

[16] J. Nilsson, U⁢(h)-free modules and coherent families, J. Pure Appl. Algebra 220 (2016), no. 4, 1475–1488. 10.1016/j.jpaa.2015.09.013Suche in Google Scholar

[17] M. Ondrus, Whittaker modules for Uq⁢(s⁢l2), J. Algebra 289 (2005), no. 1, 192–213. 10.1016/j.jalgebra.2005.03.018Suche in Google Scholar

[18] M. Ondrus, Tensor products and Whittaker vectors for quantum groups, Comm. Algebra 35 (2007), no. 8, 2506–2523. 10.1080/00927870701326387Suche in Google Scholar

[19] D. Pedersen, Irreducible quantum group modules with finite dimensional weight spaces. I, preprint (2015), https://arxiv.org/abs/1504.07042. Suche in Google Scholar

[20] D. Pedersen, Irreducible quantum group modules with finite dimensional weight spaces. II, preprint (2015), https://arxiv.org/abs/1506.08011. Suche in Google Scholar

[21] F. J. Plaza Martín and C. Tejero Prieto, Construction of simple non-weight s⁢l⁢(2)-modules of arbitrary rank, J. Algebra 472 (2017), 172–194. 10.1016/j.jalgebra.2016.10.012Suche in Google Scholar

[22] M. Rosso, Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys. 117 (1988), no. 4, 581–593. 10.1007/BF01218386Suche in Google Scholar

[23] X. Tang and Y. Xu, On representations of quantum groups Uq⁢(fm⁢(K,H)), Bull. Aust. Math. Soc. 78 (2008), no. 2, 261–284. 10.1017/S0004972708000701Suche in Google Scholar

Received: 2020-12-04
Revised: 2021-03-03
Published Online: 2021-03-21
Published in Print: 2021-05-01

Š 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0345/html?lang=de
Button zum nach oben scrollen