Startseite Maximal subalgebras of finite-dimensional algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Maximal subalgebras of finite-dimensional algebras

  • Miodrag Cristian Iovanov und Alexander Harris Sistko EMAIL logo
Veröffentlicht/Copyright: 14. Juni 2019

Abstract

We study maximal associative subalgebras of an arbitrary finite-dimensional associative algebra B over a field 𝕂 and obtain full classification/description results of such algebras. This is done by first obtaining a complete classification in the semisimple case and then lifting to non-semisimple algebras. The results are sharpest in the case of algebraically closed fields and take special forms for algebras presented by quivers with relations. We also relate representation theoretic properties of the algebra and its maximal and other subalgebras and provide a series of embeddings between quivers, incidence algebras and other structures which relate indecomposable representations of algebras and some subalgebras via induction/restriction functors. Some results in literature are also re-derived as a particular case, and other applications are given.


Communicated by Freydoon Shahidi


Acknowledgements

The authors would like to thank Ryan Kinser for a careful reading of a preliminary version of this paper and many useful suggestions which improved the paper; they would also like to thank Victor Camillo for encouraging discussions and suggesting a few additional references.

References

[1] A. L. Agore, The maximal dimension of unital subalgebras of the matrix algebra, Forum Math. 29 (2017), no. 1, 1–5. 10.1515/forum-2015-0241Suche in Google Scholar

[2] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras and slices, J. Algebra 319 (2008), no. 8, 3464–3479. 10.1016/j.jalgebra.2007.12.010Suche in Google Scholar

[3] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162. 10.1112/blms/bdm107Suche in Google Scholar

[4] I. Assem, F. U. Coelho and S. Trepode, The bound quiver of a split extension, J. Algebra Appl. 7 (2008), no. 4, 405–423. 10.1142/S0219498808002928Suche in Google Scholar

[5] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), no. 5, 1547–1555. 10.1080/00927879808826219Suche in Google Scholar

[6] I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-by-nilpotent extensions, Colloq. Math. 81 (1999), no. 1, 21–31. 10.4064/cm-81-1-21-31Suche in Google Scholar

[7] I. Assem and D. Zacharia, On split-by-nilpotent extensions, Colloq. Math. 98 (2003), no. 2, 259–275. 10.4064/cm98-2-10Suche in Google Scholar

[8] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Universitys, Cambridge, 1995. 10.1017/CBO9780511623608Suche in Google Scholar

[9] V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6 (2001), no. 1, 3–8. 10.1007/BF01236059Suche in Google Scholar

[10] R. Basili, On the irreducibility of varieties of commuting matrices, J. Pure Appl. Algebra 149 (2000), no. 2, 107–120. 10.1016/S0022-4049(99)00027-4Suche in Google Scholar

[11] R. Basili, On the number of irreducible components of commuting varieties, J. Pure Appl. Algebra 149 (2000), no. 2, 121–126. 10.1016/S0022-4049(99)00036-5Suche in Google Scholar

[12] R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268 (2003), no. 1, 58–80. 10.1016/S0021-8693(03)00388-0Suche in Google Scholar

[13] A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. 10.1090/S0002-9947-06-03879-7Suche in Google Scholar

[14] S. Caenepeel, G. Militaru and S. Zhu, Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations, Lecture Notes in Math. 1787, Springer., Berlin, 2002. 10.1007/b83849Suche in Google Scholar

[15] S. Caenepeel and B. Zhu, Separable bimodules and approximation, Algebr. Represent. Theory 8 (2005), no. 2, 207–223. 10.1007/s10468-005-0971-xSuche in Google Scholar

[16] S. Dăscălescu, C. Năstăsescu and C. Raianu, Hopf Algebras. An Introduction, Monogr. Textb. Pure Appl. Math. 235, Marcel Dekker, New York, 2001. Suche in Google Scholar

[17] E. B. Dynkin, Maximal subgroups of the classical groups (in Russian), Trudy Moskov. Mat. Obšč. 1 (1952), 39–166; translation in Amer. Math. Soc. Transl. 6 (1957), 245–378. 10.1090/trans2/006/03Suche in Google Scholar

[18] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras (in Russian), Mat. Sbornik N.S. 30(72) (1952), 349–462; translation in Amer. Math. Soc. Transl. 6 (1957), 111-244. 10.1090/trans2/006/02Suche in Google Scholar

[19] A. Elduque, On maximal subalgebras of central simple Mal’cev algebras, J. Algebra 103 (1986), no. 1, 216–227. 10.1016/0021-8693(86)90181-XSuche in Google Scholar

[20] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of associative superalgebras, J. Algebra 275 (2004), no. 1, 40–58. 10.1016/j.jalgebra.2003.12.018Suche in Google Scholar

[21] A. Elduque, J. Laliena and S. Sacristán, Maximal subalgebras of Jordan superalgebras, J. Pure Appl. Algebra 212 (2008), no. 11, 2461–2478. 10.1016/j.jpaa.2008.03.012Suche in Google Scholar

[22] P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, American Mathematical Society, Providence, 2015. 10.1090/surv/205Suche in Google Scholar

[23] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. 10.24033/bsmf.1583Suche in Google Scholar

[24] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. I, Amer. J. Math. 80 (1958), 614–622. 10.2307/2372773Suche in Google Scholar

[25] M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of Math. (2) 73 (1961), 324–348. 10.2307/1970336Suche in Google Scholar

[26] R. M. Guralnick, A note on pairs of matrices with rank one commutator, Linear and Multilinear Algebra 8 (1979/80), no. 2, 97–99. 10.1080/03081087908817305Suche in Google Scholar

[27] R. M. Guralnick, A note on commuting pairs of matrices, Linear Multilinear Algebra 31 (1992), no. 1–4, 71–75. 10.1080/03081089208818123Suche in Google Scholar

[28] R. M. Guralnick and M. D. Miller, Maximal subfields of algebraically closed fields, J. Aust. Math. Soc. Ser. A 29 (1980), no. 4, 462–468. 10.1017/S1446788700021625Suche in Google Scholar

[29] M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and Modules. Vol. 2, Math. Appl. (Springer) 586, Springer, Dordrecht, 2007. 10.1007/978-1-4020-5141-8Suche in Google Scholar

[30] N. Jacobson, Schur’s theorems on commutative matrices, Bull. Amer. Math. Soc. 50 (1944), 431–436. 10.1090/S0002-9904-1944-08169-XSuche in Google Scholar

[31] L. Kadison, New Examples of Frobenius Extensions, Univ. Lecture Ser. 14, American Mathematical Society, Providence, 1999. 10.1090/ulect/014Suche in Google Scholar

[32] T. J. Laffey, The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199–212. 10.1016/0024-3795(85)90247-2Suche in Google Scholar

[33] A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Amer. Math. Soc. Transl. 1951 (1951), no. 40, Paper No. 15. Suche in Google Scholar

[34] C. Martinez and E. Zelmanov, Simple finite-dimensional Jordan superalgebras of prime characteristic, J. Algebra 236 (2001), no. 2, 575–629. 10.1006/jabr.2000.8456Suche in Google Scholar

[35] S. Maubach and I. Stampfli, On maximal subalgebras, J. Algebra 483 (2017), 1–36. 10.1016/j.jalgebra.2017.03.021Suche in Google Scholar

[36] M. Mirzakhani, A simple proof of a theorem of Schur, Amer. Math. Monthly 105 (1998), no. 3, 260–262. 10.1080/00029890.1998.12004879Suche in Google Scholar

[37] T. S. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73 (1952), 108–114. 10.1090/S0002-9947-1952-0049855-8Suche in Google Scholar

[38] T. S. Motzkin and O. Taussky, Pairs of matrices with property L. II, Trans. Amer. Math. Soc. 80 (1955), 387–401. 10.2307/1992996Suche in Google Scholar

[39] C. Năstăsescu, M. Van den Bergh and F. Van Oystaeyen, Separable functors applied to graded rings, J. Algebra 123 (1989), no. 2, 397–413. 10.1016/0021-8693(89)90053-7Suche in Google Scholar

[40] R. S. Pierce, Associative Algebras, Grad. Texts in Math. 88, Springer, New York, 1982. 10.1007/978-1-4757-0163-0Suche in Google Scholar

[41] M. I. Platzeck, Trivial extensions, iterated tilted algebras and cluster-tilted algebras, São Paulo J. Math. Sci. 4 (2010), no. 3, 499–527. 10.11606/issn.2316-9028.v4i3p499-527Suche in Google Scholar

[42] A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), no. 3, 653–683. 10.1007/s00222-003-0315-6Suche in Google Scholar

[43] M. L. Racine, On maximal subalgebras, J. Algebra 30 (1974), 155–180. 10.1016/0021-8693(74)90198-7Suche in Google Scholar

[44] M. L. Racine, Maximal subalgebras of exceptional Jordan algebras, J. Algebra 46 (1977), no. 1, 12–21. 10.1016/0021-8693(77)90391-XSuche in Google Scholar

[45] M. L. Racine, Maximal subalgebras of central separable algebras, Proc. Amer. Math. Soc. 68 (1978), no. 1, 11–15. 10.1090/S0002-9939-1978-0453796-5Suche in Google Scholar

[46] M. D. Rafael, Separable functors revisited, Comm. Algebra 18 (1990), no. 5, 1445–1459. 10.1080/00927879008823975Suche in Google Scholar

[47] J. Schröer, Varieties of pairs of nilpotent matrices annihilating each other, Comment. Math. Helv. 79 (2004), no. 2, 396–426. 10.1007/s00014-003-0788-3Suche in Google Scholar

[48] J. Schur, Zur Theorie der vertauschbaren Matrizen, J. Reine Angew. Math. 130 (1905), 66–76. 10.1007/978-3-642-61947-2_5Suche in Google Scholar

[49] K. Serhiyenko, Induced and coinduced modules over cluster-tilted algebras, Doctoral Dissertations Paper 851, 2015, http://digitalcommons.uconn.edu/dissertations/851. Suche in Google Scholar

[50] D. Simson, A. Skowroński and I. Assem, Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge, 2006. 10.1017/CBO9780511614309Suche in Google Scholar

Received: 2019-02-05
Published Online: 2019-06-14
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0033/html?lang=de
Button zum nach oben scrollen