Startseite Mathematik Numerical semigroups in a problem about cost-effective transport
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical semigroups in a problem about cost-effective transport

  • Aureliano M. Robles-Pérez ORCID logo EMAIL logo und José Carlos Rosales ORCID logo
Veröffentlicht/Copyright: 14. Juni 2016

Abstract

Let be the set of nonnegative integers. A problem about how to transport profitably an organized group of persons leads us to study the set T formed by the integers n such that the system of inequalities, with nonnegative integer coefficients,

a1x1++apxp<n<b1x1++bpxp

has at least one solution in p. We will see that T{0} is a numerical semigroup. Moreover, we will show that a numerical semigroup S can be obtained in this way if and only if {a+b-1,a+b+1}S, for all a,bS{0}. In addition, we will demonstrate that such numerical semigroups form a Frobenius variety and we will study this variety. Finally, we show an algorithmic process in order to compute T.

MSC 2010: 20M14; 11D07; 11D75

Communicated by Manfred Droste


Award Identifier / Grant number: MTM2014-55367-P

Funding statement: Both authors are supported by the project MTM2014-55367-P, which is funded by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER, and by the Junta de Andalucía Grant Number FQM-343. The second author is also partially supported by Junta de Andalucía/Feder Grant Number FQM-5849.

Acknowledgements

The authors would like to thank the referee for providing constructive comments and help in improving the contents of this paper.

References

[1] Ajili F. and Contejean E., Avoiding slack variables in the solving of linear diophantine equations and inequations, Theoret. Comput. Sci. 173 (1997), no. 1, 183–208. 10.1016/S0304-3975(96)00195-8Suche in Google Scholar

[2] Apéry R., Sur les branches superlinéaires des courbes algébriques, C. R. Math. Acad. Sci. Paris 222 (1946), 1198–1200. Suche in Google Scholar

[3] Bras-Amorós M., García-Sánchez P. A. and Vico-Oton A., Nonhomogeneous patterns on numerical semigroups, Internat. J. Algebra Comput. 23 (2013), 1469–1483. 10.1142/S0218196713500306Suche in Google Scholar

[4] Bras-Amorós M. and Stokes K., The semigroup of combinatorial configurations, Semigroup Forum 84 (2012), 91–96. 10.1007/s00233-011-9343-5Suche in Google Scholar

[5] Bryant L., Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings, Comm. Algebra 38 (2010), 2092–2128. 10.1080/00927870903025993Suche in Google Scholar

[6] Delgado M., García-Sánchez P. A. and Morais J., “Numericalsgps”: A GAP package on numerical semigroups, www.gap-system.org/Packages/numericalsgps.html. Suche in Google Scholar

[7] Pottier L., Bornes et algorithme de calcul des générateurs des solutions de systèmes diophantiens linéaires, C. R. Math. Acad. Sci. Paris 311 (1990), 813–816. Suche in Google Scholar

[8] Ramírez Alfonsín J. L., The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005. 10.1093/acprof:oso/9780198568209.001.0001Suche in Google Scholar

[9] Robles-Pérez A. M. and Rosales J. C., The numerical semigroup of phrases’ lengths in a simple alphabet, Sci. World J. 2013 (2013), Article ID 459024. 10.1155/2013/459024Suche in Google Scholar PubMed PubMed Central

[10] Robles-Pérez A. M. and Rosales J. C., Frobenius pseudo-varieties in numerical semigroups, Ann. Mat. Pura Appl. (4) 194 (2015), 275–287. 10.1007/s10231-013-0375-1Suche in Google Scholar

[11] Rosales J. C., Families of numerical semigroups closed under finite intersections and for the Frobenius number, Houston J. Math. 34 (2008), 339–348. 10.1007/978-1-4419-0160-6_7Suche in Google Scholar

[12] Rosales J. C., Branco M. B. and Torrão D., Sets of positive integers closed under product and the number of decimal digits, J. Number Theory 147 (2015), 1–13. 10.1016/j.jnt.2014.06.014Suche in Google Scholar

[13] Rosales J. C. and García-Sánchez P. A., Finitely Generated Commutative Monoids, Nova Science, New York, 1999. 10.1006/jabr.1999.8039Suche in Google Scholar

[14] Rosales J. C. and García-Sánchez P. A., Numerical Semigroups, Dev. Math. 20, Springer, New York, 2009. 10.1007/978-1-4419-0160-6Suche in Google Scholar

[15] Stokes K. and Bras-Amorós M., Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations, Semigroup Forum 88 (2014), 11–20. 10.1007/s00233-013-9493-8Suche in Google Scholar

Received: 2015-6-26
Revised: 2016-3-31
Published Online: 2016-6-14
Published in Print: 2017-3-1

© 2017 by De Gruyter

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0123/pdf
Button zum nach oben scrollen