Startseite Mathematik Vector valued theta functions associated with binary quadratic forms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vector valued theta functions associated with binary quadratic forms

  • Stephan Ehlen ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Oktober 2015

Abstract

We study the space of vector valued theta functions for the Weil representation of a positive definite even lattice of rank two with fundamental discriminant. We work out the relation of this space to the corresponding scalar valued theta functions of weight one and determine an orthogonal basis with respect to the Petersson inner product. Moreover, we give an explicit formula for the Petersson norms of the elements of this basis.

MSC 2010: 11F11; 11F27; 11E16

Communicated by Jan Bruinier


Award Identifier / Grant number: BR-2163/2-1

Funding statement: This work was partly supported by DFG grant BR-2163/2-1.

The results of this article are also contained in the author’s thesis [8]. I would like to thank my advisor Jan Bruinier for his constant support and helpful comments on an earlier version of this paper. Moreover, I thank the anonymous referee for carefully reading the manuscript and providing helpful comments.

References

[1] Borcherds R. E., Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562. 10.1007/s002220050232Suche in Google Scholar

[2] Bruinier J. H., Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors, Lecture Notes in Math. 1780, Springer, Berlin, 2002. 10.1007/b83278Suche in Google Scholar

[3] Bruinier J. H., Hilbert modular forms and their applications, The 1-2-3 of Modular Forms, Universitext, Springer, Berlin (2008), 105–179. 10.1007/978-3-540-74119-0_2Suche in Google Scholar

[4] Bruinier J. H. and Bundschuh M., On Borcherds products associated with lattices of prime discriminant, Ramanujan J. 7 (2003), no. 1–3, 49–61. 10.1007/978-1-4757-6044-6_5Suche in Google Scholar

[5] Bruinier J. H. and Yang T., Faltings heights of CM cycles and derivatives of L-functions, Invent. Math. 177 (2009), no. 3, 631–681. 10.1007/s00222-009-0192-8Suche in Google Scholar

[6] Bundschuh M., Ü,ber die Endlichkeit der Klassenzahl gerader Gitter der Signatur (2,n) mit einfachem Kontrollraum, Ph.D. thesis, Universität Heidelberg, 2001. Suche in Google Scholar

[7] Duke W. and Li Y., Harmonic maass forms of weight 1, Duke Math. J. 164 (2015), no. 1, 39–113. 10.1215/00127094-2838436Suche in Google Scholar

[8] Ehlen S., CM, values of regularized theta lifts, Ph.D. thesis, TU Darmstadt, 2013. Suche in Google Scholar

[9] Hofmann E. F. W., Automorphic products on unitary groups, Ph.D. thesis, TU Darmstadt, 2011. Suche in Google Scholar

[10] Kani E., The space of binary theta series, Ann. Sci. Math. Québec 36 (2012), no. 2, 501–534. Suche in Google Scholar

[11] Kitaoka Y., Arithmetic of Quadratic Forms, Cambridge Tracts in Math. 106, Cambridge University Press, Cambridge, 1993. 10.1017/CBO9780511666155Suche in Google Scholar

[12] Kneser M., Quadratische Formen, Springer, Berlin, 2002. 10.1007/978-3-642-56380-5Suche in Google Scholar

[13] Kudla S. S., Integrals of Borcherds forms, Compos. Math. 137 (2003), no. 3, 293–349. 10.1023/A:1024127100993Suche in Google Scholar

[14] Neukirch J., Algebraische Zahlentheorie, Springer, Berlin, 2007. Suche in Google Scholar

[15] Scheithauer N., The Weil representation of SL2() and some applications, Int. Math. Res. Not. IMRN 8 (2009), 1488–1545. 10.1093/imrn/rnn166Suche in Google Scholar

[16] Scheithauer N., Some constructions of modular forms for the Weil representation of SL2(), preprint 2011, http://www.mathematik.tu-darmstadt.de/~scheithauer/papers/modularforms2.pdf. Suche in Google Scholar

[17] Schwagenscheidt M. and Völz F., Lifting newforms to vector valued modular forms for the Weil representation, Int. J. Number Theory 11 (2015), no. 7, 2199–2219. 10.1142/S1793042115500980Suche in Google Scholar

[18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, 1994. Suche in Google Scholar

[19] Strömberg F., Weil representations associated with finite quadratic modules, Math. Z. 275 (2013), no. 1–2, 509–527. 10.1007/s00209-013-1145-xSuche in Google Scholar

[20] Zagier D. B., Zetafunktionen und Quadratische Körper, Hochschultext, Springer, Berlin, 1981. 10.1007/978-3-642-61829-1Suche in Google Scholar

Received: 2015-2-17
Revised: 2015-7-25
Published Online: 2015-10-14
Published in Print: 2016-9-1

© 2016 by De Gruyter

Heruntergeladen am 3.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2015-0034/pdf
Button zum nach oben scrollen