Startseite Duality theory of weighted Hardy spaces with arbitrary number of parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Duality theory of weighted Hardy spaces with arbitrary number of parameters

  • Guozhen Lu EMAIL logo und Zhuoping Ruan
Veröffentlicht/Copyright: 1. Mai 2012

Abstract

In this paper, we use the discrete Littlewood–Paley–Stein analysis to get the duality result of the weighted product Hardy space for arbitrary number of parameters under a rather weak condition on the product weight wA(n1××nk). We will show that for any k ≥ 2, (Hwp(n1××nk))*=CMOwp(n1××nk) (a generalized Carleson measure), and obtain the boundedness of singular integral operators on BMO w. Our theorems even when the weight function w = 1 extend the H1-BMO duality of Chang–R. Fefferman for the non-weighted two-parameter Hardy space H1(n×m) to Hp(n1××nk) for all 0<p1 and our weighted theory extends the duality result of Krug–Torchinsky on weighted Hardy spaces Hwp(n×m) for wAr(n×m) with 1r2 and r/2<p1 to Hwp(n1××nk) with wA(n1××nk) for all 0<p1.

Funding source: US NSF

Award Identifier / Grant number: DMS0901761

Funding source: NSFC

Award Identifier / Grant number: 1117145

Received: 2012-2-25
Published Online: 2012-5-1
Published in Print: 2014-9-1

© 2015 by De Gruyter

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2012-0018/html
Button zum nach oben scrollen