Startseite An inverse problem approach to determine possible memory length of fractional differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An inverse problem approach to determine possible memory length of fractional differential equations

  • Chuan–Yun Gu , Guo–Cheng Wu EMAIL logo und Babak Shiri
Veröffentlicht/Copyright: 22. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is a fundamental problem to determine a starting point in fractional differential equations which reveals the memory length in real life modeling. This paper describes it by an inverse problem. Fixed point theorems such as Krasnoselskii’s and Schauder type’s and nonlinear alternative for single–valued mappings are presented. Through existence analysis of the inverse problem, the range of the initial value points and the memory length of fractional differential equations are obtained. Finally, three examples are demonstrated to support the theoretical results and numerical solutions are provided.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 62076141), the Special Scientific Research Projects for Doctors of Sichuan University of Arts and Science (No. 2019BS009Z) and Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province (Grant No. DRN2101).

References

[1] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, No 3 (2010), 973–1033.10.1007/s10440-008-9356-6Suche in Google Scholar

[2] M. Al–Refai, M.A. Hajji, Monotone iterative sequences for nonlinear boundary value problems of fractional order. Nonlinear Anal.: Theor. Method. Appl. 74, No 11 (2011), 3531–3539.10.1016/j.na.2011.03.006Suche in Google Scholar

[3] A. Granas, J. Dugundji, Fixed Point Theory. Springer, New York (2003).10.1007/978-0-387-21593-8Suche in Google Scholar

[4] [4]L.L. Huang, J.H. Park, G.C. Wu, Z.W. Mo, Variable–order fractional discrete–time recurrent neural networks. J. Comput. Appl. Math. 370 (2020), # 112633.10.1016/j.cam.2019.112633Suche in Google Scholar

[5] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North–Holland Math. Studies, 204, Elsevier, Amsterdam (2006).Suche in Google Scholar

[6] A. Liemert, A. Kienle, Fundamental solution of the tempered fractional diffusion equation. J. Math. Phys. 56, No 11 (2015), # 113504.10.1063/1.4935475Suche in Google Scholar

[7] C. Li, W.H. Deng, L.J. Zhao, Well–posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B 24, No 4 (2019), 1989–2015.Suche in Google Scholar

[8] Y. Li, Y.Q. Chen, I. Podlubny, Stability of fractional–order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, No 5 (2010), 1810–1821.10.1016/j.camwa.2009.08.019Suche in Google Scholar

[9] M.L. Morgado, M. Rebelo, Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 20, No 5 (2017), 1239–1262; 10.1515/fca-2017-0065; https://www.degruyter.com/journal/key/fca/20/5/html.Suche in Google Scholar

[10] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Resear. Lett. 35, No 17 (2008), # L17403.10.1029/2008GL034899Suche in Google Scholar

[11] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[12] B. Shiri, G.C. Wu, D. Baleanu, Collocation methods for terminal value problems of tempered fractional differential equations. Appl Numer. Math. 156 (2020), 385–395.10.1016/j.apnum.2020.05.007Suche in Google Scholar

[13] D.R. Smart, Fixed Point Theorems. Cambridge University Press, Cambridge (1980).Suche in Google Scholar

[14] F. Sabzikar, M.M. Meerschaert, J. Chen, Tempered fractional calculus. J. Comput. Phys. 93 (2015), 14–28.10.1016/j.jcp.2014.04.024Suche in Google Scholar PubMed PubMed Central

[15] V.V. Tarasova, V.E. Tarasov, Economic interpretation of fractional derivative. Progr. Fract. Differ. Appl. 1 (2017), 1–7.10.18576/pfda/030101Suche in Google Scholar

[16] G.C. Wu, M. Luo, L.L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dyna. 100, No 4 (2020), 3611–3623.10.1007/s11071-020-05572-zSuche in Google Scholar

[17] G.C. Wu, D.Q. Zeng, D. Baleanu, Fractional impulsive differential equations: exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22, No 1 (2019), 180–192; 10.1515/fca-2019-0012; https://www.degruyter.com/journal/key/fca/22/1/html.Suche in Google Scholar

[18] S.Q. Zhang, Existence of solution for a boundary value problem of fractional order. Acta Math. Sci. 26, No 2 (2006), 220–228.10.1016/S0252-9602(06)60044-1Suche in Google Scholar

Received: 2021-02-07
Revised: 2021-10-28
Published Online: 2021-11-22
Published in Print: 2021-12-20

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0083/pdf?lang=de
Button zum nach oben scrollen