Startseite Some properties of the fractal convolution of functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some properties of the fractal convolution of functions

  • María Navascués EMAIL logo , Ram N. Mohapatra und Arya K.B. Chand
Veröffentlicht/Copyright: 22. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the fractal convolution of two maps f and g defined on a real interval as a way of generating a new function by means of a suitable iterated function system linked to a partition of the interval. Based on this binary operation, we consider the left and right partial convolutions, and study their properties. Though the operation is not commutative, the one-sided convolutions have similar (but not equal) characteristics. The operators defined by the lateral convolutions are both nonlinear, bi-Lipschitz and homeomorphic. Along with their self-compositions, they are Fréchet differentiable. They are also quasi-isometries under certain conditions of the scale factors of the iterated function system. We also prove some topological properties of the convolution of two sets of functions. In the last part of the paper, we study stability conditions of the dynamical systems associated with the one-sided convolution operators.

References

[1] M.F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2 (1986), 303–329; 10.1007/BF01893434.Suche in Google Scholar

[2] A.S. Besicovitch, On linear sets of points of fractional dimension. Math. Ann. 101 (1929), 161–193; 10.1007/BF01454831.Suche in Google Scholar

[3] P.G. Casazza, O. Christensen, Perturbation of operators and applications to frame theory. J. Fourier Analysis Appl. 3, No 5 (1997), 543–557; 10.1007/BF02648883.Suche in Google Scholar

[4] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990).10.2307/2532125Suche in Google Scholar

[5] F. Hausdorff, Dimension undäusseres mass. Math. Ann. 79 (1919), 157–179.10.1007/BF01457179Suche in Google Scholar

[6] J. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713–747.10.1512/iumj.1981.30.30055Suche in Google Scholar

[7] Y.S. Liang, Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal. 21 No 6 (2018), 1651–1658; 10.1515/fca-2018-0087; https://www.degruyter.com/journal/key/fca/21/6/html.Suche in Google Scholar

[8] B.B. Mandelbrot, Noises with an 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Information Theory IT-13 (1967), 289–298; 10.1109/TIT.1967.1053992.Suche in Google Scholar

[9] B.B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman, New York (1983).10.1119/1.13295Suche in Google Scholar

[10] B.B. Mandelbrot, J.V. Ness, Fractional Brownian motion, fractional noises and applications. SIAM Review. 10 (1968), 422–437; 10.1137/1010093.Suche in Google Scholar

[11] P. Mattila, Hausdorff dimension, orthogonal projections and intersection with planes. Ann. Acad. Sci. Fenn. Ser. AI 1 (1975), 227–244.10.5186/aasfm.1975.0110Suche in Google Scholar

[12] M.A. Navascués, Fractal bases of Lp spaces. Fractals 20, No 2 (2012), 141–148; 10.1142/S0218348X12500132.Suche in Google Scholar

[13] M.A. Navascués, Fractal approximation of discontinuous functions. J. of Basic and Appl. Sciences 10 (2014), 173–176; 10.6000/1927-5129.2014.10.24.Suche in Google Scholar

[14] M.A. Navascués, A.K.B. Chand, Fundamental sets of fractal functions. Acta Appl. Math. 100 (2008), 247–261; 10.1007/s10440-007-9182-2.Suche in Google Scholar

[15] M.A. Navascués, P.R. Massopust, Fractal convolution: a new operation between functions. Fract. Calc. Appl. Anal. 22 No 3 (2019), 619–643; 10.1515/fca-2019-0035; https://www.degruyter.com/journal/key/fca/22/3/html.Suche in Google Scholar

[16] M.A. Navascués, R.N. Mohapatra, M.N. Akhtar, Construction of fractal surfaces. Fractals 28 No 1 (2020), 2050033, 1–13; 10.1142/S0218348X20500334.Suche in Google Scholar

[17] R.R. Nigmatullin, W. Zhang, I. Gubaidullin, Accurate relationships between fractals and fractional integrals: new approaches and evaluations. Fract. Calc. Appl. Anal. 20 No 5 (2017), 1263–1280; 10.1515/fca-2017-0066; https://www.degruyter.com/journal/key/fca/20/5/html.Suche in Google Scholar

[18] F.M. Stein, R. Shakarchi, Functional Analysis. Introduction to Further Topics in Analysis. Princeton University Press (2012).10.1515/9781400840557Suche in Google Scholar

[19] J.A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 1140–1153; 10.1016/j.cnsns.2010.05.027.Suche in Google Scholar

[20] D. Valério, J.A. Tenreiro Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17 No 2 (2014), 552–578; 10.2478/s13540-014-0185-1; https://www.degruyter.com/journal/key/fca/17/2/html.Suche in Google Scholar

[21] P. Viswanathan, M.A. Navascués, A fractal operator on some standard spaces of functions. Proc. Edinburgh Math. Soc. 60 (2017), 771–786; 10.1017/S0013091516000316.Suche in Google Scholar

Received: 2021-01-12
Revised: 2021-10-17
Published Online: 2021-11-22
Published in Print: 2021-12-20

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0075/pdf
Button zum nach oben scrollen