Startseite A strong maximum principle for the fractional laplace equation with mixed boundary condition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A strong maximum principle for the fractional laplace equation with mixed boundary condition

  • Rafael López-Soriano und Alejandro Ortega EMAIL logo
Veröffentlicht/Copyright: 22. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work we prove a strong maximum principle for fractional elliptic problems with mixed Dirichlet–Neumann boundary data which extends the one proved by J. Dávila (cf. [11]) to the fractional setting. In particular, we present a comparison result for two solutions of the fractional Laplace equation involving the spectral fractional Laplacian endowed with homogeneous mixed boundary condition. This result represents a non–local counterpart to a Hopf’s Lemma for fractional elliptic problems with mixed boundary data.

MSC 2010: 26A33; 35B50; 35R11; 35S15

Acknowledgements

This work has been supported by the Madrid Government under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). The authors are partially supported by the Ministry of Economy and Competitiveness of Spain, under research project PID2019-106122GB-I00.

[1] B. Barrios, M. Medina, Strong maximum principles for fractional elliptic and parabolic problems with mixed boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 150, No 1 (2020), 475–495.10.1017/prm.2018.77Suche in Google Scholar

[2] C. Brändle, E. Colorado, A. de Pablo, U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 143, No 1 (2013), 39–71.10.1017/S0308210511000175Suche in Google Scholar

[3] H. Brezis, X. Cabré, Some simple nonlinear PDE’s without solutions. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1, No 2 (1998), 223–262.Suche in Google Scholar

[4] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, No 1 (2014), 23–53.10.1016/j.anihpc.2013.02.001Suche in Google Scholar

[5] X. Cabré, J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, No 5 (2010), 2052–2093.10.1016/j.aim.2010.01.025Suche in Google Scholar

[6] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, No 7-9 (2007), 1245–1260.10.1080/03605300600987306Suche in Google Scholar

[7] A. Capella, J. Dávila, L. Dupaigne, Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations. Comm. Partial Differential Equations 36, No 8 (2011), 1353–1384.10.1080/03605302.2011.562954Suche in Google Scholar

[8] J. Carmona, E. Colorado, T. Leonori, A. Ortega, Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data, Adv. Calc. Var. 14, No 4 (2021), 521–539.10.1515/acv-2019-0029Suche in Google Scholar

[9] E. Colorado, A. Ortega, The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions, J. Math. Anal. Appl. 473, No 2 (2019), 1002–1025.10.1016/j.jmaa.2019.01.006Suche in Google Scholar

[10] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions. J. Funct. Anal. 199, No 2 (2003), 468–507.10.1016/S0022-1236(02)00101-5Suche in Google Scholar

[11] J. Dávila, A strong maximum principle for the Laplace equation with mixed boundary condition. J. Funct. Anal. 183, No 1 (2001), 231–244.10.1006/jfan.2000.3729Suche in Google Scholar

[12] S. Filippas, L. Moschini, A. Tertikas, Sharp trace Hardy-Sobolev-Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, No 1 (2013), 109–161.10.1007/s00205-012-0594-4Suche in Google Scholar

[13] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 2nd Ed. (1983).Suche in Google Scholar

[14] J.-L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Translated from the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972).Suche in Google Scholar

Received: 2021-03-08
Revised: 2021-10-11
Published Online: 2021-11-22
Published in Print: 2021-12-20

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0073/pdf?lang=de
Button zum nach oben scrollen