Startseite Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems

  • Maojun Bin EMAIL logo , Haiyun Deng , Yunxiang Li und Jing Zhao
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we discuss a class of Caputo fractional evolution equations on Banach space with feedback control constraint whose value is non-convex closed in the control space. First, we prove the existence of solutions for the system with feedback control whose values are the extreme points of the convexified constraint that belongs to the original one. Secondly, we study the topological properties of the sets of admissible “state-control” pair for the original system with various feedback control constraints and the relations between them. Moreover, we obtain necessary and sufficient conditions for the solution set of original systems to be closed. In the end, an example is given to illustrate the applications of our main results.

Acknowledgements

The authors thank their institutions for the support, under NSF of Guangxi Grant Nos. 2020GXNSFAA159152, 2020GXNSFBA297142, 2020GXNSFAA159052.

References

[1] J.P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin-New York-Tokyo (1984).10.1007/978-3-642-69512-4Suche in Google Scholar

[2] M.J. Bin, Time optimal control for semilinear fractional evolution feedback control systems. Optimization 68, No 4 (2019), 819–832.10.1080/02331934.2018.1552956Suche in Google Scholar

[3] M.J. Bin, Z.H. Liu, Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Anal.: Real World Appl. 50 (2019), 613–632.10.1016/j.nonrwa.2019.05.013Suche in Google Scholar

[4] M.J. Bin, Z.H. Liu, On the “bang-bang” principle for nonlinear evolution hemivariational inequalities control systems. J. Math. Anal. Appl. 480, No 1 (2019), # 123364.10.1016/j.jmaa.2019.07.054Suche in Google Scholar

[5] A. Bressan, Differential inclusions with non-closed, non-convex right hand side. Diff. Integral Equat. 3 (1990), 633–638.Suche in Google Scholar

[6] K. Deimling, Multivalued Differential Equations. De Gruyter, Berlin (1992).10.1515/9783110874228Suche in Google Scholar

[7] A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps. Studia Math. 76 (1983), 163–174.10.4064/sm-76-2-163-174Suche in Google Scholar

[8] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier B.V., Amsterdam (2006).Suche in Google Scholar

[9] F. Hiai, H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149–182.10.1016/0047-259X(77)90037-9Suche in Google Scholar

[10] C.J. Himmelberg, Measurable relations. Fund. Math. 87 (1975), 53–72.10.4064/fm-87-1-53-72Suche in Google Scholar

[11] S.C. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis: Volume I. Theory. Kluwer Academic Publ., Dordrecht-Boston-London (1997).Suche in Google Scholar

[12] J.H. Lightbourne, S.M. Rankin, A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93 (1983), 328–337.10.1016/0022-247X(83)90178-6Suche in Google Scholar

[13] X.W. Li, Z.H. Liu, The solvability and optimal controls of impulsive fractional semilinear differential equations. Taiwanese J. Math. 19, No 2 (2015), 433–453.Suche in Google Scholar

[14] X.W. Li, Z.H. Liu, J. Li, C. Tisdell, Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math. Sci. 39, No 1 (2019), 229–242.10.1007/s10473-019-0118-5Suche in Google Scholar

[15] X.W. Li, Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim. 56, No 5 (2018), 3569–3597.10.1137/17M1162275Suche in Google Scholar

[16] X.Y Liu, Z.H. Liu, X. Fu, Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, No 1 (2014), 446–458.10.1016/j.jmaa.2013.07.032Suche in Google Scholar

[17] X.Y. Liu, Z.H. Liu, On the “bang-bang” principle for a class of fractional semilinear evolution inclusions. Proc. Royal Soc. Edinburgh 144A, No 2 (2014), 333–349.Suche in Google Scholar

[18] Z.H. Liu, M.J. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces. J. Integral Equat. Appl. 26, No 4 (2014), 527–551.Suche in Google Scholar

[19] Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim. 53, No 4 (2015), 1920–1933.10.1137/120903853Suche in Google Scholar

[20] Z.H. Liu, D. Motreanu, S.D. Zeng, Generalized penalty and regularization method for differential variational - hemivariational inequalities. SIAM J. Optim. 31, No 2 (2021), 1158–1183.10.1137/20M1330221Suche in Google Scholar

[21] Y.J. Liu, Z.H. Liu, C.F. Wen, Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete and Continuous Dynamical Systems Ser. B 24, No 3 (2019), 1297–1307.10.3934/dcdsb.2019017Suche in Google Scholar

[22] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993).Suche in Google Scholar

[23] N.S. Papageorgiou, On the “bang-bang” principle for nonlinear evolution inclusions. Aequationes Math. 45 (1993), 267–280.10.1007/BF01855884Suche in Google Scholar

[24] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[25] H.L. Royden, Real Analysis. Prentice-Hall, Englewood Cliffs, New Jersey (1988).Suche in Google Scholar

[26] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives, Theory and Applications. Gordon and Breach, Yverdon (1993).Suche in Google Scholar

[27] N. Sukavanam, S. Kumar, Approximate controllability of fractional order semilinear delay systems. J. Optim. Theory Appl. 151 (2011), 373–384.10.1007/s10957-011-9905-4Suche in Google Scholar

[28] S.I. Suslov, Nonlinear bang-bang principle in Rn. Mat. Zametki 49, No 5 (1991), 110–116; English transl.: Math. Notes 49 (1991), 518–523.Suche in Google Scholar

[29] M.H.M. Rashid, A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, No 9 (2011), 3493–3503.10.1016/j.cnsns.2010.12.043Suche in Google Scholar

[30] A.A. Tolstonogov, Extremal selections of multivalued mappings and the ‘bang-bang’ principle for evolution inclusions. Dokl. Akad. Nauk. SSSR 317 (1991), 589–593; English transl.: Soviet Math. Dokl. 43 (1991), 481–485.Suche in Google Scholar

[31] A.A. Tolstonogov, Relaxation in non-convex control problems described by first-order evolution equations. Math. Sb. 190, No 11 (1999), 135–160; English transl.: Sb. Math. 190 (1999), 1689–1714.Suche in Google Scholar

[32] A.A. Tolstonogov, D.A. Tolstonogov, On the “bang-bang” principle for nonlinear evolution inclusions. Nonlinear Differ. Equa. Appl. 6 (1999), 101–118.10.1007/s000300050067Suche in Google Scholar

[33] A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal. 4 (1996), 173–203.10.1007/BF00425964Suche in Google Scholar

[34] A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems. Set-Valued Anal. 4 (1996), 237–269.10.1007/BF00419367Suche in Google Scholar

[35] A.A. Tolstonogov, Properties of the set of admissible “state-control” pairs for first-order evolution control systems. Izvestiya: Math. 65, No 3 (2001), 617–640.10.1070/IM2001v065n03ABEH000343Suche in Google Scholar

[36] A.A. Tolstonogov, Relaxation in nonconvex optimal control problems with subdifferential operators. J. Math. Sci. 140, No 6 (2007), 850–872.10.1007/s10958-007-0021-9Suche in Google Scholar

[37] A.A. Tolstonogov, Relaxation in control systems of subdifferential type. Izvestiya Math. 70, No 1 (2006), 121–152.10.1070/IM2006v070n01ABEH002306Suche in Google Scholar

[38] H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

[39] Q.J. Zhou, On the solution set of differential inclusions in Banach space. J. Diff. Equ. 93 (1991), 213–237.10.1016/0022-0396(91)90011-WSuche in Google Scholar

[40] Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.10.1016/j.camwa.2009.06.026Suche in Google Scholar

[41] J.R. Wang, Y. Zhou, M. Medved, On the solvability and optimal controls of fractional integro-differential evolution systems. J. Optim. Theory Appl. 152 (2012), 31–50.10.1007/s10957-011-9892-5Suche in Google Scholar

[42] Y. Zhou, L. Zhang, X.H. Shen, Existence of mild solutions for fractional evolution equations. J. Integral Equat. Appl. 25, No 4 (2013), 557–586.Suche in Google Scholar

[43] J. Zhu, On the solution set of differential inclusions in Banach space. J. Diff. Equat. 93, No 2 (1991), 213–237.10.1016/0022-0396(91)90011-WSuche in Google Scholar

Received: 2020-12-19
Revised: 2021-07-10
Published Online: 2021-08-23
Published in Print: 2021-08-26

© 2021 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 24–4–2021)
  4. Research Paper
  5. Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
  6. Tutorial paper
  7. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
  8. Research Paper
  9. Fractional diffusion-wave equations: Hidden regularity for weak solutions
  10. Censored stable subordinators and fractional derivatives
  11. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
  12. Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis
  13. Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
  14. The rate of convergence on fractional power dissipative operator on compact manifolds
  15. Fractional Langevin type equations for white noise distributions
  16. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
  17. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
  18. The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
  19. Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
  20. Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0055/pdf?lang=de
Button zum nach oben scrollen