Startseite Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces

  • Ricardo Castillo , Miguel Loayza und Arlúcio Viana EMAIL logo
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the following fractional reaction-diffusion equation

ut(t)+t0tgα(s)Au(ts)ds=tγf(u),

where gα(t) = tα−1/Γ(α) (0 < α < 1), fC([0, ∞)) is a non-decreasing function, γ > −1, and A is an elliptic operator whose fundamental solution of its associated parabolic equation has Gaussian lower and upper bounds. We characterize the behavior of the functions f so that the above fractional reaction-diffusion equation has a bounded local solution in Lr(Ω), for non-negative initial data u0Lr(Ω), when r > 1 and Ω ⊂ ℝN is either a smooth bounded domain or the whole space ℝN. The case r = 1 is also studied.

Acknowledgments

We are grateful for the reviewers’ time and suggestions. Parts of this work were developed while the authors had opportunities to make short visits one to another and are grateful for the hospitality of the hosting institution. Viana and Castillo visited Loayza at UFPE by October and November 2019, respectively; Loayza visited Viana at UFS by March 2020. This work was partially supported by CAPES-PRINT, 88887.311962/2018-00. Viana is partially supported CNPq under grant 408194/2018-9. Castillo is supported by Bío-Bío University under grant 2020139IF/R.

References

[1] A. Aparcana, R. Castillo, O. Guzmán-Rea, M. Loayza, On the local existence for a weakly parabolic system in Lebesgue spaces. J. Differential Equations 268, No 6 (2020), 3129–3151.10.1016/j.jde.2019.09.049Suche in Google Scholar

[2] W. Arendt and A.F.M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions. J. Operator Theory 38, No 1 (1997), 87–130.Suche in Google Scholar

[3] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73 (1967), 890–896.10.1090/S0002-9904-1967-11830-5Suche in Google Scholar

[4] D.G. Aronson, Non-negative solutions of linear parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694.Suche in Google Scholar

[5] E.G. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3, No 3 (2000), 213–230.Suche in Google Scholar

[6] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data. J. Anal. Math. 68 (1996), 277–304.10.1007/BF02790212Suche in Google Scholar

[7] C. Celik and Z. Zhou, No local L1 solution for a nonlinear heat equation. Commun. Partial Differ. Equ. 28 (2003), 1807–1831.10.1081/PDE-120025486Suche in Google Scholar

[8] M. Choulli and L. Kayser, Gaussian lower bound for the Neumann Green function of a general parabolic operator. Positivity 19, No 3 (2015), 625–646.10.1007/s11117-014-0319-zSuche in Google Scholar

[9] B. de Andrade and A. Viana, On a fractional reaction-diffusion equation. Z. Angew. Math. Phys. 68, No 3 (2017), Art. 59, 11 pp.10.1007/s00033-017-0801-0Suche in Google Scholar

[10] B. de Andrade, G. Siracusa and A. Viana, A nonlinear fractional diffusion equation: well-posedness, comparison results and blow-up (2020). Submitted.Suche in Google Scholar

[11] Y. Fujishima and N. Ioku, Existence and non-existence of solutions for the heat equation with a superlinear source term. J. Math. Pures Appl. (9) 118 (2018), 128–158.10.1016/j.matpur.2018.08.001Suche in Google Scholar

[12] H. Fujita, S. Watanabe, On the uniqueness and non-uniqueness of solutions of initial value problems for some quasi-linear parabolic equations. Comm. Pure Appl. Math. 21 (1968), 631–652.10.1002/cpa.3160210609Suche in Google Scholar

[13] J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in ℝd. Math. Ann. 366, No 3-4 (2016), 941–979.10.1007/s00208-015-1356-zSuche in Google Scholar

[14] R. Laister, J.C. Robinson, M. Sierzega and A. Vidal-López, A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1519–1538.10.1016/j.anihpc.2015.06.005Suche in Google Scholar

[15] R. Laister, J.C. Robinson and M. Sierzega, A necessary and sufficient condition for uniqueness of the trivial solution in semilinear parabolic equations. J. Differential Equations 262, No 10 (2017), 4979–4987.10.1016/j.jde.2017.01.014Suche in Google Scholar

[16] K. Li, A characteristic of local existence for nonlinear fractional heat equations in Lebesgue spaces. Comput. Math. Appl. 73, No 4 (2017), 653–665.10.1016/j.camwa.2016.12.031Suche in Google Scholar

[17] A. Lopushansky, O. Lopushansky and A. Szpila, Fractional abstract Cauchy problem on complex interpolation scales. Fract. Calc. Appl. Anal. 23, No 4 (2020), 1125–1140; DOI: 10.1515/fca-2020-0057; https://www.degruyter.com/journal/key/FCA/23/4/html.Suche in Google Scholar

[18] R. Metzler, E. Barkai and J. Klafter, Anomalous transport in disordered systems underthe influence of external fields. Physica A 266 (1999), 343–350.10.1016/S0378-4371(98)00614-1Suche in Google Scholar

[19] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, No 31 (2004), R161–R208.10.1088/0305-4470/37/31/R01Suche in Google Scholar

[20] J. Peng, K. Li, A novel characteristic of solution operator for the fractional abstract Cauchy problem. J. Math. Anal. Appl. 385 (2012), 786–796.10.1016/j.jmaa.2011.07.009Suche in Google Scholar

[21] J.C. Robinson and M. Sierzega, Supersolutions for a class of semilinear heat equations. Rev. Mat. Complut. 26 (2013), 341–360.10.1007/s13163-012-0108-9Suche in Google Scholar

[22] W.R. Schneider and W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134–144.10.1063/1.528578Suche in Google Scholar

[23] A. Viana, A local theory for a fractional reaction-diffusion equation. Commun. Contemp. Math. 21, No 6 (2019), # 1850033, 26 pp.10.1142/S0219199718500335Suche in Google Scholar

[24] F.B. Weissler, Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32 (1979), 277–296.10.1016/0022-1236(79)90040-5Suche in Google Scholar

[25] F.B. Weissler, Local existence and nonexistence for semilinear parabolic eequations in Lp. Indiana Univ. Math. J. 29, No 1 (1980), 79–102.10.1512/iumj.1980.29.29007Suche in Google Scholar

[26] F.B. Weissler, Existence and non-existence of global solutions for a semilinear heat equation. Isr. J. Math. 38 (1981), 29–40.10.1007/BF02761845Suche in Google Scholar

[27] Q.-G. Zhang and H.-R. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46, No 1 (2015), 69–92.10.12775/TMNA.2015.038Suche in Google Scholar

Received: 2020-06-12
Revised: 2021-06-19
Published Online: 2021-08-23
Published in Print: 2021-08-26

© 2021 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 24–4–2021)
  4. Research Paper
  5. Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
  6. Tutorial paper
  7. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
  8. Research Paper
  9. Fractional diffusion-wave equations: Hidden regularity for weak solutions
  10. Censored stable subordinators and fractional derivatives
  11. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
  12. Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis
  13. Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
  14. The rate of convergence on fractional power dissipative operator on compact manifolds
  15. Fractional Langevin type equations for white noise distributions
  16. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
  17. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
  18. The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
  19. Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
  20. Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0051/pdf?lang=de
Button zum nach oben scrollen