Startseite Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H∞ synthesis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis

  • Atefeh Saeedian , Farshad Merrikh-Bayat EMAIL logo und Abolfazl Jalilvand
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper proposes a new method for tuning the parameters of multi-input multi-output (MIMO) fractional-order PID (FOPID) controller. The aim of the proposed method is to calculate the parameters of this controller such that the rise time and steady-state errors of the feedback system are minimized without violating the predetermined stability margins. Mathematically, this problem is formulated as maximizing the spectral norm of the open-loop transfer matrix at zero frequency subject to a constraint on the H-norm of the sensitivity function. This problem is nonlinear in parameters of the MIMO FOPID, which can be solved using the iterative algorithm developed in this paper based on non-smooth H synthesis.

References

[1] P. Apkarian, D. Noll, H.D. Tuan, Fixed-order H control design via a partially augmented Lagrangian method. IFAC Proc. Volumes 36, No 8 (2003), 69–74.10.1016/S1474-6670(17)35762-2Suche in Google Scholar

[2] P. Apkarian, D. Noll, J.B. Thevenet, H.D. Tuan, A spectral quadratic-SDP method with applications to fixed-order H2 and H synthesis. European J. of Control 10, No 6 (2004), 527–538.10.3166/ejc.10.527-538Suche in Google Scholar

[3] P. Apkarian, D. Noll, Nonsmooth H synthesis. IEEE Trans. on Automatic Control 51, No 1 (2006), 71–86.10.1109/TAC.2005.860290Suche in Google Scholar

[4] P. Apkarian, V. Bompart, D. Noll, Non-smooth structured control design with application to PID loop-shaping of a process. Internat. J. of ℝobust and Nonlinear Control: IFAC - Affiliated J. 17, No 14 (2007), 1320–1342.10.1002/rnc.1175Suche in Google Scholar

[5] M. Beschi, F. Padula, A. Visioli, Fractional robust PID control of a solar furnace. Control Engineering Practice 56, (2016), 190–199.10.1016/j.conengprac.2016.04.005Suche in Google Scholar

[6] S. Boyd, M. Hast, K.J. Åström, MIMO PID tuning via iterated LMI restriction. Internat. J. of ℝobust and Nonlinear Control 26, No 8 (2016), 1718–1731.Suche in Google Scholar

[7] H. Chao, Y. Luo, L. Di, Y. Chen, ℝoll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Engineering Practice 18, No 7 (2010), 761–772.10.1016/j.conengprac.2010.02.003Suche in Google Scholar

[8] Z. Chen, X. Yuan, B. Ji, P. Wang, H. Tian, Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Conversion and Management 84 (2014), 390–404.10.1016/j.enconman.2014.04.052Suche in Google Scholar

[9] J.C. Doyle, K. Glover, P.P. Khargonekar, B.A. Francis, State-space solutions to standard H2 and H control problems. 1988 American Control Conference (1988), 1691–1696.10.23919/ACC.1988.4789992Suche in Google Scholar

[10] ℝ. El-Khazali, Fractional-order PIλDμ controller design. Computers & Mathematics with Appl. 66, No 5 (2013), 639–646.10.1016/j.camwa.2013.02.015Suche in Google Scholar

[11] F. Leibfritz, E.M.E. Mostafa, An interior point constrained trust region method for a special class of nonlinear semidefinite programming. SIAM J. on Optimization 12, No 4 (2002), 1048–1074.10.1137/S1052623400375865Suche in Google Scholar

[12] H. Li, Y. Luo, Y. Chen, A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. on Control Systems Technology 18, No 2 (2009), 516–520.10.1109/TCST.2009.2019120Suche in Google Scholar

[13] Y. Luo, Y. Chen, C.Y. Wang, Y.G. Pi, Tuning fractional order proportional integral controllers for fractional order systems. J. of Process Control 20, No 7 (2010), 823–831.10.1016/j.jprocont.2010.04.011Suche in Google Scholar

[14] F. Merrikh-Bayat, M. Karimi-Ghartemani, Method for designing PIλDμ stabilisers for minimum-phase fractional-order systems. IET Control Theory & Appl. 4, No 1 (2010), 61–70.10.1049/iet-cta.2008.0062Suche in Google Scholar

[15] F. Merrikh-Bayat, N. Mirebrahimi, M.R. Khalili, Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications. Internat. J. of Control, Automation and Systems 13, No 1 (2015), 81–90.10.1007/s12555-013-0335-ySuche in Google Scholar

[16] F. Merrikh-Bayat, A. Salimi, Performance enhancement of non-minimum phase feedback systems by fractional-order cancellation of non-minimum phase zero on the ℝiemann surface: New theoretical and experimental results. arXiv Preprint arXiv:1611.09121 (2016).Suche in Google Scholar

[17] F. Merrikh-Bayat, A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes. ISA Trans. 68 (2017), 99–108.10.1016/j.isatra.2017.03.002Suche in Google Scholar

[18] F. Merrikh-Bayat, An iterative LMI approach for H synthesis of multivariable PI/PD controllers for stable and unstable processes. Chemical Engin. ℝes. and Design 132 (2018), 606–615.10.1016/j.cherd.2018.02.012Suche in Google Scholar

[19] ℝ. Mohsenipour, M. Jegarkandi, Fractional order MIMO controllers for robust performance of airplane longitudinal motion. Aerospace Science and Technology 91 (2019), 617–626.Suche in Google Scholar

[20] D. Mustafa, K. Glover, D.J.N. Limebeer, Solutions to the H general distance problem which minimize an entropy integral. Automatica 27, No 1 (1991), 193–199.10.1016/0005-1098(91)90021-SSuche in Google Scholar

[21] P. ℝoy, B.K. ℝoy, Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation. Control Engin. Practice 48 (2016), 119–135.Suche in Google Scholar

[22] J.B. Thevenet, D. Noll, P. Apkarian, Nonlinear spectral SDP method for BMI-constrained problems: Applications to control design. Informatics in Control, Automation and ℝobotics I (2006), 61–72.10.1007/1-4020-4543-3_7Suche in Google Scholar

[23] H.H. Vahab, C.A. Monje, Fractional-order PID control of a MIMO distillation column process using improved bat algorithm. Soft Computing 23, No 18 (2018), 8887–8906.Suche in Google Scholar

[24] W.Y. Chiu, Method of reduction of variables for bilinear matrix inequality problems in system and control designs. IEEE Trans. on Systems, Man, and Cybernetics: Systems 47, No 7 (2016), 1241–1256.10.1109/TSMC.2016.2571323Suche in Google Scholar

[25] M. Zhang, X. Lin, W. Yin, An improved tuning method of fractional order proportional differentiation (FOPD) controller for the path tracking control of tractors. Biosystems Engin. 116, No 4 (2013), 478–486.10.1016/j.biosystemseng.2013.10.001Suche in Google Scholar

Received: 2020-01-21
Revised: 2021-05-29
Published Online: 2021-08-23
Published in Print: 2021-08-26

© 2021 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 24–4–2021)
  4. Research Paper
  5. Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
  6. Tutorial paper
  7. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
  8. Research Paper
  9. Fractional diffusion-wave equations: Hidden regularity for weak solutions
  10. Censored stable subordinators and fractional derivatives
  11. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
  12. Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis
  13. Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
  14. The rate of convergence on fractional power dissipative operator on compact manifolds
  15. Fractional Langevin type equations for white noise distributions
  16. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
  17. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
  18. The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
  19. Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
  20. Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0047/pdf?lang=de
Button zum nach oben scrollen