Startseite Simultaneous inversion for the fractional exponents in the space-time fractional diffusion equation ∂tβ u = −(− Δ)α/2 u − (− Δ)γ/2 u
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simultaneous inversion for the fractional exponents in the space-time fractional diffusion equation tβ u = −(− Δ)α/2 u − (− Δ)γ/2 u

  • Ngartelbaye Guerngar , Erkan Nane EMAIL logo , Ramazan Tinaztepe , Suleyman Ulusoy und Hans Werner Van Wyk
Veröffentlicht/Copyright: 23. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we consider the space-time fractional (nonlocal) equation characterizing the so-called “double-scale” anomalous diffusion

tβu(t,x)=(Δ)α/2u(t,x)(Δ)γ/2u(t,x),t>0,1<x<1,

where tβ is the Caputo fractional derivative of order β ∈ (0, 1) and 0 < αγ < 2. We consider a nonlocal inverse problem and show that the fractional exponents β, α and γ are determined uniquely by the data u(t, 0) = g(t), 0 < tT. The existence of the solution for the inverse problem is proved using the quasi-solution method which is based on minimizing an error functional between the output data and the additional data. In this context, an input-output mapping is defined and its continuity is established. The uniqueness of the solution for the inverse problem is proved by means of eigenfunction expansion of the solution of the forward problem and some basic properties of fractional Laplacian. A numerical method based on discretization of the minimization problem, namely the steepest descent method and a least squares approach, is proposed for the solution of the inverse problem. The numerical method determines the fractional exponents simultaneously. Finally, numerical examples with noise-free and noisy data illustrate applicability and high accuracy of the proposed method.

Acknowledgements

The authors thank the referee and the editor for the valuable suggestions that improved the presentation of the original manuscript.

References

[1] H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983).Suche in Google Scholar

[2] M. Caputo, Linear models of diffuson whose Q is almost frequency independent, Part II.Geophys. J. R. Astron. Soc. 13 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSuche in Google Scholar

[3] J. Chen, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation.Inv. Probl. 25 (2009), 115–131.Suche in Google Scholar

[4] Z-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel estimates for Δα/2β/2.Ill. J. Math. 54 (2010), 1357–1392.Suche in Google Scholar

[5] Z-Q. Chen, M.M. Meerschaert and E. Nane, Space-time fractional diffusion on bounded domains.J. Math. Anal. Appl. 393 (2012), 479–488.10.1016/j.jmaa.2012.04.032Suche in Google Scholar

[6] H. Duchateau and P.B. Pektas, An adjoint problem approach and coarse-fine mesh method for identitfication of the diffusion coefficient in a linear parabolic equation. J. Inv. Ill-Posed Probl. 14 (2006), 435–63.10.1515/156939406778247615Suche in Google Scholar

[7] S.D. Eidelman, S.D. Ivasyshen, A.N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel (2004).10.1007/978-3-0348-7844-9Suche in Google Scholar

[8] N. Guerngar, E. Nane, H.-W. Van Wyk and S. Ulusoy, Inverse problem for a three-parameter space-time fractional diffusion equation. arXiv:1810.01543.Suche in Google Scholar

[9] R. Gorenflo, J. Loutchko, Y. Luchko, Computation of the Mittag-leffler Function and Its Derivatives.Fract. Calc. Appl. Anal. 5, No 4 (2002), 491–518.Suche in Google Scholar

[10] B. Jin, and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem.Inv. Prob. 28 (2012), # 075010.10.1088/0266-5611/28/7/075010Suche in Google Scholar

[11] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).Suche in Google Scholar

[12] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. Second Ed., Springer (2011).10.1007/978-1-4419-8474-6Suche in Google Scholar

[13] G. Li, D. Zhang, X. Jia and M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inv. Probl. 29 (2013), # 065014.10.1088/0266-5611/29/6/065014Suche in Google Scholar

[14] Y. Liu, S. Tatar and S. Ulusoy, Quasi-solution approach for a two-dimensional nonlinear inverse diffusion problem.Appl. Math. Comput. 219 (2013), 10956–10960.10.1016/j.amc.2013.05.013Suche in Google Scholar

[15] J.J. Liu and M. Yamamato, A backward problem for the time-fractional diffusion equation.Appl. Anal. 89 (2010), 1769–1788.10.1080/00036810903479731Suche in Google Scholar

[16] Y. Luchko, Initial-boundary value problems for the one-dimensional time-fractional diffusion equation.Fract. Calc. Appl. Anal. 15, No 1 (2012), 141–160; 10.2478/s13540-012-0010-7https://www.degruyter.com/journal/key/FCA/15/1/html.Suche in Google Scholar

[17] F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation.Fract. Calc. Appl. Anal. 4 (2001), 153–192.Suche in Google Scholar

[18] M.M. Meerschaert, D.A. Benson, H.-P. Scheffler and B. Baeumer, Stochastic solution of space-time fractional diffusion equations.Phys. Rev. E 65 (2002), # 041103.10.1103/PhysRevE.65.041103Suche in Google Scholar PubMed

[19] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Suche in Google Scholar

[20] K. Sakamoto and M. Yamamato, Inverse source problem with a final overdetermination for a fractional diffusion equation.Math. Cont. Rel. Fiel. 4 (2011), 509–518.10.3934/mcrf.2011.1.509Suche in Google Scholar

[21] K. Sakamoto and M. Yamamato, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems.J. Math. Anal. Appl. 382 (2011), 426–447.10.1016/j.jmaa.2011.04.058Suche in Google Scholar

[22] S. Tatar, Monotonicity of input-output mapping related to inverse elastoplastic torsional problem.Appl. Math. Model 37 (2013), 9552–9561.10.1016/j.apm.2013.05.005Suche in Google Scholar

[23] S. Tatar, R. Tinaztepe and S. Ulusoy, Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation. Appl. Anal. (2014), 1–23.10.1080/00036811.2014.984291Suche in Google Scholar

[24] S. Tatar and S. Ulusoy, A uniqueness result for an inverse problem in a space-time fractional diffusion equation.Elec. J. Diff. Eq. 2013, No 258 (2013), 1–9.Suche in Google Scholar

[25] X. Xu, J. Cheng and M. Yamamato, Carleman estimate for a fractional diffusion equation with half order and application.Appl. Anal. 90 (2011), 1355–1371.10.1080/00036811.2010.507199Suche in Google Scholar

[26] M. Yamamato and Y. Zhang, Conditional stability in determining a zeroth-order coefficient in a half-order fractional diffusion equation by a Carleman estimate.Inv. Probl. 28, No 10 (2012), # 105010.10.1088/0266-5611/28/10/105010Suche in Google Scholar

[27] Y. Zhang, and X. Xu, Inverse source problem for a fractional diffusion equation.Inv. Probl. 27 (2011), # 035010.10.1088/0266-5611/27/3/035010Suche in Google Scholar

Received: 2020-05-19
Revised: 2021-05-09
Published Online: 2021-06-23
Published in Print: 2021-06-25

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0035/pdf?lang=de
Button zum nach oben scrollen