Startseite Operational calculus for the Riemann–Liouville fractional derivative with respect to a function and its applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Operational calculus for the Riemann–Liouville fractional derivative with respect to a function and its applications

  • Hafiz Muhammad Fahad und Arran Fernandez EMAIL logo
Veröffentlicht/Copyright: 9. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Mikusiński’s operational calculus is a formalism for understanding integral and derivative operators and solving differential equations, which has been applied to several types of fractional-calculus operators by Y. Luchko and collaborators, such as for example [26], etc. In this paper, we consider the operators of Riemann–Liouville fractional differentiation of a function with respect to another function, and discover that the approach of Luchko can be followed, with small modifications, in this more general setting too. The Mikusiński’s operational calculus approach is used to obtain exact solutions of fractional differential equations with constant coefficients and with this type of fractional derivatives. These solutions can be expressed in terms of Mittag-Leffler type functions.

[1] A. Ahmadova, I.T. Huseynov, A. Fernandez, N.I. Mahmudov, Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 97C (2021), # 105735.10.1016/j.cnsns.2021.105735Suche in Google Scholar

[2] R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo fractional derivative. Revista de la Real Acad. de Cienc. Exactas, Fís. y Naturales: Ser. A. Matemáticas 113, No 3 (2019), 1873–1891.10.1007/s13398-018-0590-0Suche in Google Scholar

[3] D. Baleanu, A. Fernandez, A generalisation of the Malgrange–Ehrenpreis theorem to find fundamental solutions to fractional PDEs. Electron. J. Qual. Theory Differ. Equ. 2017 (2017), No 15, 1–12.10.14232/ejqtde.2017.1.15Suche in Google Scholar

[4] D. Baleanu, A. Fernandez, On fractional operators and their classifications. Mathematics 7, No 9, (2019), # 830.10.3390/math7090830Suche in Google Scholar

[5] M.A. Al-Bassam, Y. F. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations. J. Fract. Calc. 7 (1995), 69–88.Suche in Google Scholar

[6] I.H. Dimovski, Operational calculus for a class of differential operators. C.R. Acad. Bulgare Sci. 19, No 12 (1966), 1111–1114.Suche in Google Scholar

[7] I.H. Dimovski, On an operational calculus for a differential operator. C.R. Acad. Bulgare Sci. 21, No 6 (1968), 513–516.Suche in Google Scholar

[8] I.H. Dimovski, Convolutional Calculus. Bulgarian Academy of Sciences, Sofia (1982); 2nd Ed., Kluwer Academic Publisher, Dordrecht (1990).10.1007/978-94-009-0527-6Suche in Google Scholar

[9] I.H. Dimovski, The commutant of the Riemann-Liouville operator of fractional integration. Fract. Calc. Appl. Anal. 12, No 4 (2009), 443–448; at http://www.math.bas.bg/complan/fcaa/volume12/fcaa124/Dimovski_fcaa_12_4.pdf.Suche in Google Scholar

[10] S. Dugowson, Les différentielles métaphysiques: histoire et philosophie de la généralisation de l’ordre de dérivation. PhD Thesis, Université Paris Nord (1994).Suche in Google Scholar

[11] H.M. Fahad, M. ur Rehman, A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations. Preprint: arXiv:1907.04541 (2020).10.1002/mma.7772Suche in Google Scholar

[12] A. Fernandez, D. Baleanu, A.S. Fokas, Solving PDEs of fractional order using the unified transform method. Appl. Math. Comput. 339 (2018), 738–749.10.1016/j.amc.2018.07.061Suche in Google Scholar

[13] A. Fernandez, C. Kürt, M.A. Özarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators. Comput. Appl. Math. 39 (2020), No 200.10.1007/s40314-020-01224-5Suche in Google Scholar

[14] H.G. Flegg, Mikusinski’s operational calculus. Int. J. Math. Educ. Sci. Technol. 5, No 2 (1974), 131–137.10.1080/0020739740050201Suche in Google Scholar

[15] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014); 2nd Ed. (2020).10.1007/978-3-662-43930-2Suche in Google Scholar

[16] R. Gorenflo, Y. F. Luchko, Operational method for solving generalized Abel integral equations of second kind. Integr. Transf. Spec. Funct. 5 (1997), 47–58.10.1080/10652469708819125Suche in Google Scholar

[17] R. Gorenflo, Yu.F. Luchko, H.M. Srivastava, Operational method for solving integral equations with Gauss–s hypergeometric function as a kernel. Internal. J. Math. & Statist. Sci. 6 (1997), 179–200.Suche in Google Scholar

[18] S.B. Hadid, Yu.F. Luchko, An operational method for solving fractional differential equations of an arbitrary real order. Panamer. Math. J. 6 (1996), 57–73.Suche in Google Scholar

[19] L.A.-M. Hanna, M. Al-Kandari, Yu.F. Luchko, Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives. Fract. Calc. Appl. Anal. 23, No 1 (2020), 103-–125; 10.1515/fca-2020-0004; https://www.degruyter.com/journal/key/FCA/23/1/html.Suche in Google Scholar

[20] L.A-M. Hanna, Yu.F. Luchko, Operational calculus for the Caputo-type fractional Erdélyi-Kober derivative and its applications. Integr. Transf. Spec. Funct. 25 (2014), 359–373.10.1080/10652469.2013.856901Suche in Google Scholar

[21] R. Hilfer, Yu.F. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12, No 3 (2009), 299–318; at http://www.math.bas.bg/complan/fcaa/volume12/fcaa123/Hilfer_Luchko_Tomovski_FCAA_12_3.pdf.Suche in Google Scholar

[22] R. Hilfer, Yu. Luchko, Desiderata for fractional derivatives and integrals. Mathematics 7, No 2 (2019), # 149.10.3390/math7020149Suche in Google Scholar

[23] I.T. Huseynov, A. Ahmadova, G.O. Ojo, N.I. Mahmudov, A natural extension of Mittag-Leffler function associated with a triple infinite series. Preprint: 2011.03999 (2020).Suche in Google Scholar

[24] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform. Discrete Contin. Dyn. Syst. Ser. S (2019), 1775–1786.10.3934/dcdss.2020039Suche in Google Scholar

[25] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier 204, North-Holland (2006).10.1016/S0304-0208(06)80001-0Suche in Google Scholar

[26] Yu.F. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2, No 4 (1999), 463–488.Suche in Google Scholar

[27] Yu.F. Luchko, R. Gorenflo, An operational method for solving fractional differential equations. Acta Math. Vietnamica 24 (1999), 207–234.Suche in Google Scholar

[28] Yu.F. Luchko, H.M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus. Comput. Math. Appl. 29 (1995), 73–85.10.1016/0898-1221(95)00031-SSuche in Google Scholar

[29] Yu.F. Luchko, S. Yakubovich, An operational method for solving some classes of integro-differential equations. Differential Equations 30 (1994), 247–256.Suche in Google Scholar

[30] J.A. Tenreiro Machado, V. Kiryakova, The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20, No 2 (2017), 307–336; 10.1515/fca-2017-0017; https://www.degruyter.com/journal/key/FCA/20/2/html.Suche in Google Scholar

[31] J. Mikusiński, Operational Calculus. Pergamon Press, Oxford (1959).Suche in Google Scholar

[32] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York (1993).Suche in Google Scholar

[33] K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York-London (1974).Suche in Google Scholar

[34] T.J. Osler, Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18, No 3 (1970), 658–674.10.1137/0118059Suche in Google Scholar

[35] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1998).Suche in Google Scholar

[36] J.E. Restrepo, M. Ruzhansky, D. Suragan, Explicit solutions for linear variable–coefficient fractional differential equations with respect to functions. Appl. Math. Comput. 403 (2021), # 126177.10.1016/j.amc.2021.126177Suche in Google Scholar

[37] J.E. Restrepo, D. Suragan, Oscillatory solutions of fractional integro-differential equations. Math. Methods Appl. Sci. 43, No 15 (2020), 9080–9089.10.1002/mma.6602Suche in Google Scholar

[38] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publ., N. York-London (1993).Suche in Google Scholar

[39] R.K. Saxena, S.L. Kalla, R. Saxena, Multivariate analogue of generalised Mittag-Leffler function. Integr. Transf. Spec. Funct. 22, No 7 (2011), 533–548.10.1080/10652469.2010.533474Suche in Google Scholar

[40] H.G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y.Q. Chen, A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlin. Sci. Numer. Simul. 64 (2018), 213–231.10.1016/j.cnsns.2018.04.019Suche in Google Scholar

[41] S.B. Yakubovich, Yu.F. Luchko, The Hypergeometric Approach to Integral Transforms and Convolutions. Kluwer Academic Publishers, Dordrecht-London (1994).10.1007/978-94-011-1196-6Suche in Google Scholar

Received: 2020-12-06
Revised: 2021-02-19
Published Online: 2021-05-09
Published in Print: 2021-04-27

© 2021 Diogenes Co., Sofia

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0023/html
Button zum nach oben scrollen