Startseite Fractional integro-differential equations in Wiener spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fractional integro-differential equations in Wiener spaces

  • Vu Kim Tuan EMAIL logo
Veröffentlicht/Copyright: 13. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we study the global solvability of several ordinary and partial fractional integro-differential equations in the Wiener space of functions with bounded square averages.

Acknowledgement

The author would like to thank Dr. Amin Boumenir for fruitful discussions.

References

[1] A. Akilandeeswari, K. Balachandran, and N. Annapoorani, On fractional partial differential equations of diffusion type with integral kernel. In: Mathematical Modelling, Optimization, Analytic and Numerical Solutions, Eds: P. Manchanda, R.P. Lozi, and A.H. Siddiqi, Springer, Singapore, 2020, 333–349.10.1007/978-981-15-0928-5_16Suche in Google Scholar

[2] Sh.A. Alimov, V.A. Ilyin, and E.M. Nikishin, Convergence problems of multiple Fourier series and spectral decompositions, II (In Russian). Uspekhi Mat. Nauk32 (1977), 107–130; Engl. transl. in: Russian Math. Surveys32 (1977), 115–139.Suche in Google Scholar

[3] R.L. Bagley and P.J. Torvik, Fractional calculus, a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(1983), 741–748.10.2514/3.8142Suche in Google Scholar

[4] R.L. Bagley and P.J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol. 30 (1986), 133–155.10.1122/1.549887Suche in Google Scholar

[5] M.Sh. Birman and M.Z. Solomyak, The principal term of the spectral asymptotics for non-smooth elliptic problems (In Russian). Funktsional. Anal. i Prilozhen. 4, No 4 (1970), 1–13; Engl. transl. in Functional Analysis Appl. 4 (1971), 265–275.Suche in Google Scholar

[6] M.Sh. Birman and M.Z. Solomyak, Spectral asymptotics of nonsmooth elliptic operators, I (In Russian). Trudy Moskov. Mat. Obshch. 27 (1972), 3–52; Engl. transl. in Trans. Moscow Math. Soc. 27 (1972/ 1975), 1–52.Suche in Google Scholar

[7] M.M. El-Borai and A. Debbouche, On some fractional integro-differential equations with analytic semigroups. Intern. J. of Contemp. Math. Sci. 4, No 25-28 (2009), 1361–1371.Suche in Google Scholar

[8] R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin, 2014.10.1007/978-3-662-43930-2Suche in Google Scholar

[9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Math. Studies, Vol. 204, Elsevier, New York, 2006.Suche in Google Scholar

[10] V.P. Mikhailov, Partial Differential Equations. Mir, Moscow, 1978.Suche in Google Scholar

[11] R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Amer. Math. Soc. Coll. Publ. 19, 1934.Suche in Google Scholar

[12] Y.A. Rossikhin and M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50 (1997), 15–67.10.1115/1.3101682Suche in Google Scholar

[13] F. Saedpanah, Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel. Dept. of Math. Sciences, Chalmers University of Technology, 2009.Suche in Google Scholar

[14] Vu Kim Tuan, Laplace transform of functions with bounded averages. Intern. J. of Evolution Equations1, No 4 (2005), 429–433.Suche in Google Scholar

[15] Vu Kim Tuan, Inverse problem for fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 1 (2011), 31–55; 10.2478/s13540-011-0004-x; https://www.degruyter.com/view/journals/fca/14/1/fca.14.issue-1.xmlSuche in Google Scholar

[16] D. V. Widder, The Laplace Transform. Princeton Univ. Press, Princeton, 1946.Suche in Google Scholar

[17] N. Wiener, Generalized harmonic analysis. Acta Math. 55 (1930), 117–258.10.1017/CBO9780511662492.007Suche in Google Scholar

[18] H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

Received: 2020-03-22
Revised: 2020-05-06
Published Online: 2020-11-13
Published in Print: 2020-10-27

© 2020 Diogenes Co., Sofia

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2020-0065/html?lang=de
Button zum nach oben scrollen