Startseite Determination of the fractional order in semilinear subdiffusion equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Determination of the fractional order in semilinear subdiffusion equations

  • Mykola Krasnoschok , Sergei Pereverzyev , Sergii V. Siryk und Nataliya Vasylyeva EMAIL logo
Veröffentlicht/Copyright: 11. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We analyze the inverse boundary value-problem to determine the fractional order ν of nonautonomous semilinear subdiffusion equations with memory terms from observations of their solutions during small time. We obtain an explicit formula reconstructing the order. Based on the Tikhonov regularization scheme and the quasi-optimality criterion, we construct the computational algorithm to find the order ν from noisy discrete measurements. We present several numerical tests illustrating the algorithm in action.

Acknowledgements

This work is partially supported by Grant H2020-MSCA-RISE-2014 Project number 645672 (AMMODIT: Approximation Methods for Molecular Modelling and Diagnosis Tools). The paper has been finalized during the visit of the first, third and fourth authors to Johann Radon Institute (RICAM), Linz. The hospitality and perfect working conditions of RICAM are gratefully acknowledged.

The authors are grateful to the anonymous referees for useful suggestions and comments.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. Dover Publications, Washington (1965).Suche in Google Scholar

[2] B. Berkowitz, J. Klafter, R. Metzler, H. Scher, Physical pictures of transport in heterogeneous media: Advection-dispersion random-walk, and fractional derivative formulations. Water Resour. Res. 38, No 10 (2002), 9-1–9-12; 10.1029/2001WR001030.Suche in Google Scholar

[3] M. Caputo, Models of flux in porous media with memory. Water Resour. Res. 36, No 3 (2000), 693–705; 10.1029/1999WR900299.Suche in Google Scholar

[4] M. Caputo, J.M. Carcione, M.A.B. Botelho, Modeling extreme-event precursors with the fractional diffusion equation. Fract. Calc. Appl. Anal. 18, No 1 (2015), 208–222; 10.1515/fca-2015-0014; https://www.degruyter.com/view/journals/fca/18/1/fca.18.issue-1.xml.Suche in Google Scholar

[5] M. Caputo, W. Plastino, Diffusion in porous layers with memory. Geophys. J. Internat. 158, No 1 (2004), 385–396; 10.1111/j.1365-246X.2004.02290.x.Suche in Google Scholar

[6] K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, No 6-8 (2005), 743–773; 10.1016/j.cma.2004.06.006.Suche in Google Scholar

[7] N. Engheia, On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Mag. 39, No 4 (1997), 35–46; 10.1109/74.632994.Suche in Google Scholar

[8] M. Fornasier, V. Naumova, S.V. Pereverzyev, Parameter choice strategies for multipenalty regularization. SIAM J. Numer. Anal. 52, No 4 (2014), 1770–1794; 10.1137/130930248.Suche in Google Scholar

[9] W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, No 1 (1995), 46–53; 10.1016/S0006-3495(95)80157-8.Suche in Google Scholar

[10] Y. Hatano, J. Nakagawa, Sh. Wang, M. Yamamoto, Determination of order in fractional diffusion equation. J. Math-for-Industry5 (2013), 51–57.Suche in Google Scholar

[11] M. Huntul, D. Lesnic, T. Johansson, Determination of an additive time- and space-dependent coefficient in the heat equation. Int. J. Numer. Meth. for Heat & Fluid Flow. 28, No 6 (2018), 1352–1373; 10.1108/HFF-04-2017-0153.Suche in Google Scholar

[12] G. Iaffaldano, M. Caputo and S. Martino, Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth. Syst. Sci. Discuss. 2 (2005), 1329–1357.10.5194/hess-10-93-2006Suche in Google Scholar

[13] J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron. J. Diff. Equations. 2016, No 199 (2016), 1–28.Suche in Google Scholar

[14] J. Janno, N. Kinash, Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements. Inv. Probl. 34, No 2 (2018), 025007; 10.1088/1361-6420/aaa0f0.Suche in Google Scholar

[15] N. Kinash, J. Janno, Inverse problem for a generalized subdiffusion equation with final overdetermination. Math. Modell. Anal. 24, No 2 (2019), 236–262; 10.3846/mma.2019.016.Suche in Google Scholar

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006).Suche in Google Scholar

[17] M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in the one-dimensional case. Nonlinear Anal. 165 (2017), 1–17; 10.1016/j.na.2017.09.004.Suche in Google Scholar

[18] M. Krasnoschok, V. Pata, N. Vasylyeva, Semilinear subdiffusion with memory in multidimensional domains. Mathematische Nachrichten292, No 7 (2019), 1490–1513; 10.1002/mana.201700405.Suche in Google Scholar

[19] M. Krasnoschok, V. Pata, N. Vasylyeva, Solvability of linear boundary value problems for subdiffusion equations with memory. J. Int. Eq. Appl. 30, No 3 (2018), 417–445; 10.1216/JIE-2018-30-3-417.Suche in Google Scholar

[20] M. Krasnoschok, S. Pereverzyev, S.V. Siryk, N. Vasylyeva, Regularized reconstruction of the order in semilinear subdiffusion with memory. In: J. Cheng, S. Lu, M. Yamamoto (Eds.), Inverse Problems and Related Topics (ICIP2 2018). Springer Proc. in Mathematics & Statistics. 310 (2020), 205–236; 10.1007/978-981-15-1592-7_10.Suche in Google Scholar

[21] Z. Li, Y. Liu, M. Yamamoto, Handbook of Fractional Calculus with Applications. De Gruyter, Berlin, 2 (2019), 431–442.Suche in Google Scholar

[22] Z. Li, M. Yamamoto, Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation. Appl. Anal. 94, No 3 (2015), 570–579; 10.1080/00036811.2014.926335.Suche in Google Scholar

[23] G. Li, D. Zhang, X. Jia, M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inv. Probl. 29, No 6 (2013), # 065014; 10.1088/0266-5611/29/6/065014.Suche in Google Scholar

[24] S. Lu, S.V. Pereverzyev, Regularization Theory for Ill-Posed Problems: Selected Topics. De Gruyter, Berlin (2013).10.1515/9783110286496Suche in Google Scholar

[25] M.M. Meerschart, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2011).10.1515/9783110258165Suche in Google Scholar

[26] J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis for fractional diffusion equations – new mathematical aspects motivated by industrial collaboration. J. Math-for-Industry2 (2010), 99–108.Suche in Google Scholar

[27] Z. Ruan, W. Zhang, Z. Wang, Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation. Appl. Math. Comput. 328 (2018), 365–379; 10.1016/j.amc.2018.01.025.Suche in Google Scholar

[28] F. Shen, W. Tan, Y. Zhao, T. Masuoka, The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7, No 5 (2006), 1072–1080; 10.1016/j.nonrwa.2005.09.007.Suche in Google Scholar

[29] S.V. Siryk, A note on the application of the Guermond-Pasquetti mass lumping correction technique for convection-diffusion problems. J. Comput. Phys. 376 (2019), 1273–1291; 10.1016/j.jcp.2018.10.016.Suche in Google Scholar

[30] L.L. Sun, Y. Zhang, T. Wei, Recovering the time dependent potential function in a multi-term time fractional diffusion equation. Appl. Numeric. Math. 135 (2019), 228–245; 10.1016/j.apnum.2018.09.001.Suche in Google Scholar

[31] C. Sun, G. Li, X. Jia, Numerical inversion for the multiple fractional orders in the multiterm TFDE. Adv. Math. Phys. 2017 (2017), 3204959; 10.1155/2017/3204959.Suche in Google Scholar

[32] G. Szegö, Orthogonal Polynomials, 4th Ed. AMS, Providence (1975).Suche in Google Scholar

[33] S. Tatar, R. Tinaztepe, S. Ulusoy, Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equations. Appl. Anal. 95, No 1 (2016), 1–23; 10.1080/00036811.2014.984291.Suche in Google Scholar

[34] A.N. Tikhonov and V.B. Glasko, Use of the regularization methods in nonlinear problems. USSR Comput. Math. Math. Phys. 5, No 3 (1965), 93–107; 10.1016/0041-5553(65)90150-3.Suche in Google Scholar

[35] B. Yu, X. Jiang, H. Qi, An inverse problem to estimate an unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid. Acta Mech. Sin. 31, No 2 (2015), 153–161; 10.1007/s10409-015-0408-7.Suche in Google Scholar

[36] G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, No 6 (2002), 461–580; 10.1016/S0370-1573(02)00331-9.Suche in Google Scholar

[37] Y.X. Zhang, J. Jia, L. Yan, Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation. Inv. Probl. 34, No 12 (2018), 125002; 10.1088/1361-6420/aae04f.Suche in Google Scholar

Received: 2019-04-20
Published Online: 2020-07-11
Published in Print: 2020-06-25

© 2020 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial Note
  3. FCAA related news, events and books (FCAA–Volume 23–3–2020)
  4. Survey Paper
  5. Why fractional derivatives with nonsingular kernels should not be used
  6. Fractional-order susceptible-infected model: Definition and applications to the study of COVID-19 main protease
  7. Generalized fractional Poisson process and related stochastic dynamics
  8. Research Paper
  9. Determination of the fractional order in semilinear subdiffusion equations
  10. Degenerate Kirchhoff (p, q)–Fractional systems with critical nonlinearities
  11. Solution of linear fractional order systems with variable coefficients
  12. “Fuzzy” calculus: The link between quantum mechanics and discrete fractional operators
  13. The green function for a class of Caputo fractional differential equations with a convection term
  14. Inverse problem for a multi-term fractional differential equation
  15. Maximum principles for a class of generalized time-fractional diffusion equations
  16. Multiple positive solutions for a nonlocal PDE with critical Sobolev-Hardy and singular nonlinearities via perturbation method
  17. Variational approximation for fractional Sturm–Liouville problem
  18. The 2-adic derivatives and fractal dimension of Takagi-like function on 2-series field
  19. Construction of fixed point operators for nonlinear difference equations of non integer order with impulses
  20. An averaging principle for stochastic differential equations of fractional order 0 < α < 1
  21. Weak solvability of the variable-order subdiffusion equation
Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2020-0035/html
Button zum nach oben scrollen