Abstract
The stochastic solution with Gaussian stationary increments is established for the symmetric space-time fractional diffusion equation when 0 < β < α ≤ 2, where 0 < β ≤ 1 and 0 < α ≤ 2 are the fractional derivation orders in time and space, respectively. This solution is provided by imposing the identity between two probability density functions resulting (i) from a new integral representation formula of the fundamental solution of the symmetric space-time fractional diffusion equation and (ii) from the product of two independent random variables. This is an alternative method with respect to previous approaches such as the scaling limit of the continuous time random walk, the parametric subordination and the subordinated Langevin equation. A new integral representation formula for the fundamental solution of the space-time fractional diffusion equation is firstly derived. It is then shown that, in the symmetric case, a stochastic solution can be obtained by a Gaussian process with stationary increments and with a random wideness scale variable distributed according to an arrangement of two extremal Lévy stable densities. This stochastic solution is self-similar with stationary increments and uniquely defined in a statistical sense by the mean and the covariance structure.
Numerical simulations are carried out by choosing as Gaussian process the fractional Brownian motion. Sample paths and probability densities functions are shown to be in agreement with the fundamental solution of the symmetric space-time fractional diffusion equation.
Please cite to this paper as published in: Fract. Calc. Appl. Anal., Vol. 19, No 2 (2016), pp. 408–440, DOI: 10.1515/fca-2016-0022
Acknowledgements
This research is supported by MINECO under Grant MTM2013-40824-P, by Bizkaia Talent and European Commission through COFUND programme under Grant AYD-000-252, and also by the Basque Government through the BERC 2014-2017 program and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.
References
[1] O.C. Akin, P. Paradisi, P. Grigolini, Perturbation-induced emergence of poisson-like behavior in non-poisson systems. J. Stat. Mech.: Theory Exp. (2009), P01013.10.1088/1742-5468/2009/01/P01013Search in Google Scholar
[2] O.C. Akin, P. Paradisi, P. Grigolini, Periodic trend and fluctuations: The case of strong correlation. Physica A371 (2006), 157–170.10.1016/j.physa.2006.04.054Search in Google Scholar
[3] P. Allegrini, P. Paradisi, D. Menicucci, M. Laurino, R. Bedini, A. Piarulli, A. Gemignani, Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace. Chaos Soli-tons Fract. 55 (2013), 32–43.10.1016/j.chaos.2013.05.019Search in Google Scholar
[4] B. Baeumer, M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4 (2001), 481–500.Search in Google Scholar
[5] B. Baeumer, M.M. Meerschaert, E. Nane, Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361, No 7 (2009), 3915–3930.10.1090/S0002-9947-09-04678-9Search in Google Scholar
[6] B. Baeumer, M.M. Meerschaert, E. Nane, Space-time fractional diffusion. J. Appl. Prob. 46 (2009), 1100–1115.10.1239/jap/1261670691Search in Google Scholar
[7] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos Vol. 3, World Sci. Publ., New Jersey (2012).10.1142/8180Search in Google Scholar
[8] E. Barkai, CTRW pathways to the fractional diffusion equation. Chem. Phys. 284 (2002), 13–27.10.1016/S0301-0104(02)00533-5Search in Google Scholar
[9] D. A. Benson, M.M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective. Adv. Water Resour. 51 (2013), 479–497.10.1016/j.advwatres.2012.04.005Search in Google Scholar PubMed PubMed Central
[10] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications. Springer (2008).10.1007/978-1-84628-797-8Search in Google Scholar
[11] S. Bianco, P. Grigolini, P. Paradisi, A fluctuating environment as a source of periodic modulation. Chem. Phys. Lett. 438, No 4-6 (2007), 336–340.10.1016/j.cplett.2007.03.013Search in Google Scholar
[12] D. O. Cahoy, On the parametrization of the M-Wright function. Far East J. Theor. Stat. 34, No 2 (2011), 155–164.Search in Google Scholar
[13] D.O. Cahoy, Estimation and simulation for the M-Wright function. Commun. Stat.-Theor. M. 41, No 8 (2012), 1466–1477.10.1080/03610926.2010.543299Search in Google Scholar
[14] D.O. Cahoy, Moment estimators for the two-parameter M-Wright distribution. Computation. Stat. 27, No 3 (2012), 487–497.10.1007/s00180-011-0269-xSearch in Google Scholar
[15] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani, On strong anomalous diffusion. Physica D134 (1999), 75–93.10.1016/S0167-2789(99)00031-7Search in Google Scholar
[16] J.M. Chambers, C.L. Mallows, B.W. Stuck, A method for simulating skewed stable random variables. J. Amer. Statist. Assoc. 71, (1976), 340–344.10.1080/01621459.1976.10480344Search in Google Scholar
[17] M. Chevrollier, N. Mercadier, W. Guerin, R. Kaiser, Anomalous photon diffusion in atomic vapors. Eur. Phys. J. D58 (2010), 161–165.10.1140/epjd/e2010-00053-4Search in Google Scholar
[18] A. Compte, Stochastic foundations of fractional dynamics. Phys. Rev. E53, No 4 (1996), 4191–4193.10.1103/PhysRevE.53.4191Search in Google Scholar
[19] D.R. Cox, Renewal Theory. Methuen & Co. Ltd., London (1962).Search in Google Scholar
[20] J.L. da Silva, Local times for grey Brownian motion. Int. J. Mod. Phys. Conf. Ser. 36 (2015), 1560003. [7th Jagna Int. Workshop (2014)].10.1142/S2010194515600034Search in Google Scholar
[21] J.L. da Silva, M. Erraoui, Grey Brownian motion local time: Existence and weak-approximation. Stochastics87 (2014), 347–361.10.1080/17442508.2014.945451Search in Google Scholar
[22] D. del Castillo-Negrete, Fractional diffusion in plasma turbulence. Phys. Plasmas11, No 8 (2004), 3854–3864.10.1063/1.1767097Search in Google Scholar
[23] D. del Castillo-Negrete, Non-diffusive, non-local transport in fluids and plasmas. Nonlin. Processes Geophys. 17 (2010), 795–807.10.5194/npg-17-795-2010Search in Google Scholar
[24] D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Phys. Rev. Lett. 94 (2005), 065003.10.1103/PhysRevLett.94.065003Search in Google Scholar PubMed
[25] D. del Castillo-Negrete, P. Mantica, V. Naulin, J.J. Rasmussen, JET EFDA contributors, Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments. Nucl. Fusion48 (2008), 075009.10.1088/0029-5515/48/7/075009Search in Google Scholar
[26] T. Dieker, Simulation of Fractional Brownian Motion. Ph.D. Thesis, CWI and University of Twente, The Netherlands (2004).Search in Google Scholar
[27] P. Dieterich, R. Klages, R. Preuss, A. Schwab, Anomalous dynamics of cell migration. Proc. Nat. Acad. Sci. 105, No 2 (2008), 459–463.10.1073/pnas.0707603105Search in Google Scholar PubMed PubMed Central
[28] G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C. S. Chang, On the validity of the local diffusive paradigm in turbulent plasma transport. Phys. Rev. E82 (2010), 025401(R).10.1103/PhysRevE.82.025401Search in Google Scholar PubMed
[29] B. Dybiec, Anomalous diffusion: temporal non-Markovianity and weak ergodicity breaking. J. Stat. Mech.-Theory Exp. (2009), P08025.10.1088/1742-5468/2009/08/P08025Search in Google Scholar
[30] B. Dybiec, E. Gudowska-Nowak, Subordinated diffusion and continuous time random walk asymptotics. Chaos20, No 4 (2010), 043129.10.1063/1.3522761Search in Google Scholar PubMed
[31] S. Eule, R. Friedrich, Subordinated Langevin equations for anomalous diffusion in external potentials–biasing and decoupled external forces. Europhys. Lett. 86 (2009), 3008.10.1209/0295-5075/86/30008Search in Google Scholar
[32] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd Ed. Wiley, New York (1971).Search in Google Scholar
[33] H.C. Fogedby, Langevin equations for continuous time Lévy flights. Phys. Rev. E50, No 2 (1994), 1657–1660.10.1103/PhysRevE.50.1657Search in Google Scholar PubMed
[34] D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E77 (2008), 021122.10.1103/PhysRevE.77.021122Search in Google Scholar PubMed
[35] D. Fulger, E. Scalas, G. Germano, Random numbers form the tails of probability distributions using the transformation method. Fract. Calc. Appl. Anal. 16, No 2 (2013), 332–353; DOI: 10.2478/s13540-013-0021-z; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.10.2478/s13540-013-0021-z;Search in Google Scholar
[36] G. Germano, M. Politi, E. Scalas, R. L. Schilling, Stochastic calculus for uncoupled continuous-time random walks. Phys. Rev. E79, No 6 (2009), 066102.10.1103/PhysRevE.79.066102Search in Google Scholar
[37] R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, No 1 (2000), 75–86.Search in Google Scholar
[38] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 167–191.Search in Google Scholar
[39] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, No 2 (2009), 400–415.10.1016/j.cam.2008.04.005Search in Google Scholar
[40] R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics193 (2011), 119–132.10.1140/epjst/e2011-01386-2Search in Google Scholar
[41] R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: J. Klafter, S.C. Lim, and R. Metzler (Ed-s), Fractional Dynamics. Recent Advances, World Sci., Singapore (2012), 227–261.10.1142/9789814340595_0010Search in Google Scholar
[42] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284 (2002), 521–541.10.1016/S0301-0104(02)00714-0Search in Google Scholar
[43] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models. Physica A305, No 1-2 (2002), 106–112.10.1016/S0378-4371(01)00647-1Search in Google Scholar
[44] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: A discrete random walk approach. Nonlinear Dynam. 29, No 1-4 (2002), 129–143.10.1023/A:1016547232119Search in Google Scholar
[45] R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fract. 34, No 1 (2007), 87–103.10.1016/j.chaos.2007.01.052Search in Google Scholar
[46] P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E59, No 3 (1999), 2603–2613.10.1103/PhysRevE.59.2603Search in Google Scholar
[47] K. Gustafson, D. del Castillo-Negrete, W. Dorland, Finite Larmor radius effects on nondiffusive tracer transport in zonal flows. Phys. Plasmas15 (2008), 102309.10.1063/1.3003072Search in Google Scholar
[48] J. Honkonen, Stochastic processes with stable distributions in random environments. Phys. Rev. E55, No 1 (1996), 327–331.10.1103/PhysRevE.53.327Search in Google Scholar
[49] J.R.M. Hosking, Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 20 (1984), 1898–1908.10.1029/WR020i012p01898Search in Google Scholar
[50] B.D. Hughes, Anomalous diffusion, stable processes, and generalized functions. Phys. Rev. E65 (2002), 035105(R).10.1103/PhysRevE.65.035105Search in Google Scholar
[51] J. Klafter, I.M. Sokolov, Anomalous diffusion spread its wings. Physics World18 (2005), 29–32.10.1088/2058-7058/18/8/33Search in Google Scholar
[52] D. Kleinhans, R. Friedrich, Continuous-time random walks: Simulation of continuous trajectories. Phys. Rev. E76 (2007), 061102.10.1103/PhysRevE.76.061102Search in Google Scholar
[53] X. Leoncini, L. Kuznetsov, G. Zaslavsky, Evidence of fractional transport in point vortex flow. Chaos Solitons Fract. 19 (2004), 259–273.10.1016/S0960-0779(03)00040-7Search in Google Scholar
[54] Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54 (2013), 031505.10.1063/1.4794076Search in Google Scholar
[55] M. Magdziarz, A. Weron, J. Klafter, Equivalence of the fractional Fokker–Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett. 101 (2008), 210601.10.1103/PhysRevLett.101.210601Search in Google Scholar
[56] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fract. 7 (1996), 1461–1477.10.1016/0960-0779(95)00125-5Search in Google Scholar
[57] F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.Search in Google Scholar
[58] F. Mainardi, A. Mura, G. Pagnini, The functions of the Wright type in fractional calculus. Lecture Notes of Seminario Interdisciplinare di Matematica9 (2010), 111–128.10.1155/2010/104505Search in Google Scholar
[59] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in time-fractional diffusion processes: A tutorial survey. Int. J. Differ. Equations2010 (2010), 104505.10.1155/2010/104505Search in Google Scholar
[60] F. Mainardi, G. Pagnini, The Wright functions as solutions of the time-fractional diffusion equations. Appl. Math. Comput. 141 (2003), 51–62.10.1016/S0096-3003(02)00320-XSearch in Google Scholar
[61] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441–459.Search in Google Scholar
[62] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin convolution for subordinated stable processes. J. Math. Sci. 132, No 5 (2006), 637–642.10.1007/s10958-006-0008-ySearch in Google Scholar
[63] F. Mainardi, G. Pagnini, R. K. Saxena, Fox H functions in fractional diffusion. J. Comput. Appl. Math. 178 (2005), 321–331.10.1016/j.cam.2004.08.006Search in Google Scholar
[64] M.M. Meerschaert, D. A. Benson, H.-P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E65 (2002), 041103.10.1103/PhysRevE.65.041103Search in Google Scholar
[65] M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter (2012).10.1515/9783110258165Search in Google Scholar
[66] Y. Meroz, I.M. Sokolov, J. Klafter, Unequal twins: Probability distributions do not determine everything. Phys. Rev. Lett. 107 (2011), 260601.10.1103/PhysRevLett.107.260601Search in Google Scholar
[67] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Theor. 37, No 31 (2004), R161–R208.10.1088/0305-4470/37/31/R01Search in Google Scholar
[68] R. Metzler, T.F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284 (2002), 67–90.10.1016/S0301-0104(02)00537-2Search in Google Scholar
[69] E.W. Montroll, Random walks on lattices. Proc. Symp. Appl. Math. Am. Math. Soc. 16 (1964), 193–220.10.1090/psapm/016/0161378Search in Google Scholar
[70] E.W. Montroll, G.H. Weiss, Random walks on lattices, II. J. Math. Phys. 6 (1965), 167–181.10.1063/1.1704269Search in Google Scholar
[71] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Ph.D. Thesis, Physics Dept., Univ. of Bologna (2008); Lambert Acad. Publ. (2011).Search in Google Scholar
[72] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. Funct. 20, No 3-4 (2009), 185–198.10.1080/10652460802567517Search in Google Scholar
[73] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41 (2008), 285003.10.1088/1751-8113/41/28/285003Search in Google Scholar
[74] G. Pagnini, Erdélyi–Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117–127; DOI: 10.2478/s13540-012-0008-1; http://www.degruyter.com/view/j/fca.2012.15.issue-1/issue-files/fca.2012.15.issue-1.xml.10.2478/s13540-012-0008-1;Search in Google Scholar
[75] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No 2 (2013), 436–453; DOI: 10.2478/s13540-013-0027-6; http://www.degruyter.com/view/j/fca.2013.16.issue-2/issue-files/fca.2013.16.issue-2.xml.10.2478/s13540-013-0027-6;Search in Google Scholar
[76] G. Pagnini, Self-similar stochastic models with stationary increments for symmetric space-time fractional diffusion. In:Proc. 10th IEEE/ASME Internat. Conf. on Mechatronic and Embedded Systems and Applications, MESA 2014, Senigallia (AN), Italy, 10–12 Sept. (2014), Paper Code MESA2014 003; doi:10.1109/MESA.2014.6935520.10.1109/MESA.2014.6935520Search in Google Scholar
[77] G. Pagnini, Short note on the emergence of fractional kinetics. Physica A409 (2014), 29–34.10.1016/j.physa.2014.03.079Search in Google Scholar
[78] G. Pagnini, Subordination formulae for space-time fractional diffusion processes via Mellin convolution. In: P.M. Pardalos, R.P. Agarwal, L. Kočcinac, R. Neck, N. Mastorakis, K. Ntalianas (Ed-s), Recent Advances in Mathematics, Statistics and Economics. Proc. of the 2014 Internat. Conf. on Pure Mathematics –Applied Mathematics (PMAM’14), Venice, Italy, 15–17 March (2014), 40–45.Search in Google Scholar
[79] G. Pagnini, Generalized Equations for Anomalous Diffusion and Their Fundamental Solutions. Thesis for Degree in Physics, Univ. of Bologna (Oct. 2000), In Italian.Search in Google Scholar
[80] G. Pagnini, A. Mura, F. Mainardi, Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion. Int. J. Stoch. Anal. 2012 (2012), 427383.10.1155/2012/427383Search in Google Scholar
[81] G. Pagnini, A. Mura, F. Mainardi, Two-particle anomalous diffusion: Probability density functions and self-similar stochastic processes. Phil. Trans. R. Soc. A371 (2013), 20120154.10.1098/rsta.2012.0154Search in Google Scholar
[82] G. Pagnini, E. Scalas, Historical notes on the M-Wright/Mainardi function. Commun. in Appl. and Industr. Math. 6, No 1 (2014), e–496; DOI: 10.1685/journal.caim.496 (Editorial).10.1685/journal.caim.496Search in Google Scholar
[83] P. Paradisi, Fractional calculus in statistical physics: The case of time fractional diffusion equation. Commun. in Appl. and Industr. Math. 6, No 2 (2014), e–530; doi: 10.1685/journal.caim.530.10.1685/journal.caim.530Search in Google Scholar
[84] P. Paradisi, P. Allegrini, A. Gemignani, M. Laurino, D. Menicucci, A. Piarulli, Scaling and intermittency of brain events as a manifestation of consciousness. AIP Conf. Proc. 1510 (2013), 151–161.10.1063/1.4776519Search in Google Scholar
[85] P. Paradisi, R. Cesari, D. Contini, A. Donateo, L. Palatella, Characterizing memory in atmospheric time series: an alternative approach based on renewal theory. Eur. Phys. J. Special Topics174 (2009), 207–218.10.1140/epjst/e2009-01101-0Search in Google Scholar
[86] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Diffusion scaling in event-driven random walks: an application to turbulence. Rep. Math. Phys. 70 (2012), 205–220.10.1016/S0034-4877(12)60040-8Search in Google Scholar
[87] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence. Nonlin. Processes Geophys. 19 (2012), 113–126; Corrigendum, in:Nonlin. Processes Geophys. 19 (2012), 685.Search in Google Scholar
[88] P. Paradisi, R. Cesari, P. Grigolini, Superstatistics and renewal critical events. Cent. Eur. J. Phys. 7 (2009), 421–431.10.2478/s11534-009-0069-xSearch in Google Scholar
[89] P. Paradisi, R. Cesari, F. Mainardi, A. Maurizi, F. Tampieri, A generalized Fick’s law to describe non-local transport effects. Phys. Chem. Earth26, No 4 (2001), 275–279.10.1016/S1464-1909(01)00006-5Search in Google Scholar
[90] P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, The fractional Fick’s law for non-local transport processes. Physica A293, No 1-2 (2001), 130–142.10.1016/S0378-4371(00)00491-XSearch in Google Scholar
[91] P. Paradisi, D. Chiarugi, P. Allegrini, A renewal model for the emergence of anomalous solute crowding in liposomes. BMC Syst. Biol. 9, Suppl. 3 (2015), s7.10.1186/1752-0509-9-S3-S7Search in Google Scholar
[92] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).Search in Google Scholar
[93] S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, No 10 (2006), 105010.10.1103/PhysRevLett.96.105010Search in Google Scholar
[94] A. Rocco, B.J. West, Fractional calculus and the evolution of fractal phenomena. Physica A265, No 3-4 (1999), 535–546.10.1016/S0378-4371(98)00550-0Search in Google Scholar
[95] A. Saichev, G. Zaslavsky, Fractional kinetic equations: solutions and applications. Chaos7 (1997), 753–764.10.1063/1.166272Search in Google Scholar
[96] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A284 (2000), 376–384.10.1016/S0378-4371(00)00255-7Search in Google Scholar
[97] E. Scalas, R. Gorenflo, F. Mainardi, Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E69 (2004), 011107.10.1103/PhysRevE.69.011107Search in Google Scholar PubMed
[98] M. Schmiedeberg, V.Yu. Zaburdaev, H. Stark, On moments and scaling regimes in anomalous random walks. J. Stat. Mech.-Theory Exp. (2009), P12020.10.1088/1742-5468/2009/12/P12020Search in Google Scholar
[99] W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134–144.10.1063/1.528578Search in Google Scholar
[100] J.H.P. Schulz, A.V. Chechkin, R. Metzler, Correlated continuos time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics. J. Phys. A: Math. Theor. 46 (2013), 475001.10.1088/1751-8113/46/47/475001Search in Google Scholar
[101] I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today55 (2002), 48–54.10.1063/1.1535007Search in Google Scholar
[102] I.M. Sokolov, R. Metzler, Non-uniqueness of the first passage time density of Lévy random processes. J. Phys. A: Math. Theor. 37, (2004), L609–L615.10.1088/0305-4470/37/46/L02Search in Google Scholar
[103] V.V. Uchaikin, Montroll–Weiss problem, fractional equations and stable distributions. Int. J. Theor. Phys. 39 (2000), 2087–2105.10.1023/A:1003670023058Search in Google Scholar
[104] V.V. Uchaikin, V.M. Zolotarev, Chance and Stability. Stable Distributions and their Applications. VSP, Utrecht (1999).10.1515/9783110935974Search in Google Scholar
[105] G.H. Weiss, R.J. Rubin, Random walks: Theory and selected applications. Adv. Chem. Phys. 52 (1983), 363–505.10.1002/9780470142769.ch5Search in Google Scholar
[106] A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker–Planck equation. Phys. Rev. E77 (2008), 036704.10.1103/PhysRevE.77.036704Search in Google Scholar
[107] R. Weron, On the Chambers–Mallows–Stuck method for simulating skewed stable random variables. Statist. Probab. Lett. 28 (1996), 165–171; Corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96 Corr.pdf or http://www.im.pwr.wroc.pl/∼ hugo/ RePEc/wuu/wpaper/HSC 96 01.pdf.10.1016/0167-7152(95)00113-1Search in Google Scholar
[108] G.M. Zaslavsky, Anomalous transport and fractal kinetics. In: H.K. Moffatt, G.M. Zaslavsky, P. Compte, and M. Tabor (Ed-s), Topological Aspects of the Dynamics of Fluids and Plasmas, NATO ASI Series Vol. 218, Kluwer, Dordrecht (1992), 481–491.10.1007/978-94-017-3550-6_28Search in Google Scholar
[109] G.M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Physica D76 (1994), 110–122.10.1016/0167-2789(94)90254-2Search in Google Scholar
[110] G.M. Zaslavsky, Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. Chaos4 (1994), 25–33.10.1063/1.166054Search in Google Scholar
[111] G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, (2002), 461–580.10.1016/S0370-1573(02)00331-9Search in Google Scholar
[112] G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005).Search in Google Scholar
[113] G.M. Zaslavsky, B.A. Niyazov, Fractional kinetics and accelerator modes. Phys. Rep. 283 (1997), 73–93.10.1016/S0370-1573(96)00054-3Search in Google Scholar
© 2016 Diogenes Co., Sofia
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA-Volume 19-2-2016)
- Survey Paper
- A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations
- Survey Paper
- A free fractional viscous oscillator as a forced standard damped vibration
- Research Paper
- On a Legendre Tau method for fractional boundary value problems with a Caputo derivative
- Research Paper
- Nonlinear Dirichlet problem with non local regional diffusion
- Research Paper
- Generalized fraction evolution equations with fractional Gross Laplacian
- Research Paper
- A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation
- Research Paper
- Convolutional approach to fractional calculus for distributions of several variables
- Research Paper
- Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions
- Research Paper
- Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober fractional integral conditions
- Research Paper
- Spatial dispersion of elastic waves in a bar characterized by tempered nonlocal elasticity
- Research Paper
- Applications of the fractional Sturm-Liouville problem to the space-time fractional diffusion in a finite domain
- Short Paper
- Measurement of para-xylene diffusivity in zeolites and analyzing desorption curves using the Mittag-Leffler function
- Short Paper
- Monotonicity of functions and sign changes of their Caputo derivatives
- Short Note
- On the Volterra μ-functions and the M-Wright functions as kernels and eigenfunctions of Volterra type integral operators
Articles in the same Issue
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA-Volume 19-2-2016)
- Survey Paper
- A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations
- Survey Paper
- A free fractional viscous oscillator as a forced standard damped vibration
- Research Paper
- On a Legendre Tau method for fractional boundary value problems with a Caputo derivative
- Research Paper
- Nonlinear Dirichlet problem with non local regional diffusion
- Research Paper
- Generalized fraction evolution equations with fractional Gross Laplacian
- Research Paper
- A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation
- Research Paper
- Convolutional approach to fractional calculus for distributions of several variables
- Research Paper
- Existence theorems for semi-linear Caputo fractional differential equations with nonlocal discrete and integral boundary conditions
- Research Paper
- Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdelyi-Kober fractional integral conditions
- Research Paper
- Spatial dispersion of elastic waves in a bar characterized by tempered nonlocal elasticity
- Research Paper
- Applications of the fractional Sturm-Liouville problem to the space-time fractional diffusion in a finite domain
- Short Paper
- Measurement of para-xylene diffusivity in zeolites and analyzing desorption curves using the Mittag-Leffler function
- Short Paper
- Monotonicity of functions and sign changes of their Caputo derivatives
- Short Note
- On the Volterra μ-functions and the M-Wright functions as kernels and eigenfunctions of Volterra type integral operators