Startseite A Comprehensive Analysis Using Maximum Likelihood Estimation and Artificial Neural Networks for Modeling Arthritic Pain Relief Data
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Comprehensive Analysis Using Maximum Likelihood Estimation and Artificial Neural Networks for Modeling Arthritic Pain Relief Data

  • Deepthy G S EMAIL logo , Sujesh Areekara und Nicy Sebastian
Veröffentlicht/Copyright: 14. November 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The primary motivation behind this study is to precisely predicting the behaviour of the distribution by employing neural networks and enhancing its performance through maximum likelihood estimation. The numerical findings were compared to the predictions derived from the multilayer artificial neural network model developed with seven neurons in the hidden layer. The R value was 0.999 and the deviation values were less than 0.045  for the artificial neural network models. Also, the results of a numerical investigation using maximum likelihood estimation agree exactly with those obtained from predictions made using artificial neural networks. The findings of this study reveal that neural networks might be a very promising tool for clinical data analysis.

References

[1] M. A. Ariana, B. Vaferi and G. Karimi, Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks, Powder Technol. 278 (2015), 1–10. 10.1016/j.powtec.2015.03.005Suche in Google Scholar

[2] H. M. Almongy, E. M. Almetwally, H. M. Aljohani, A. S. Alghamdi and E. H. Hafez, A new extended Rayleigh distribution with applications of COVID-19 data, Results Phys. 23 (2021), Article ID 104012. 10.1016/j.rinp.2021.104012Suche in Google Scholar PubMed PubMed Central

[3] M. Bebbington, C. D. Lai and R. Zitikis, A flexible Weibull extension, Reliab. Eng. Syst. Safety 92 (2007), no. 6, 719–726. 10.1016/j.ress.2006.03.004Suche in Google Scholar

[4] H. W. Block, T. H. Savits and H. Singh, The reversed hazard rate function, Probab. Engrg. Inform. Sci. 12 (1998), no. 1, 69–90. 10.1017/S0269964800005064Suche in Google Scholar

[5] N. K. Chandra and D. Roy, Some results on reversed hazard rate, Probab. Engrg. Inform. Sci. 15 (2001), no. 1, 95–102. 10.1017/S0269964801151077Suche in Google Scholar

[6] A. B. Çolak, T. N. Sindhu, S. A. Lone, M. T. Akhtar and A. Shafiq, A comparative analysis of maximum likelihood estimation and artificial neural network modeling to assess electrical component reliability, Qual. Reliab. Eng. Int. 40 (2024), no. 1, 91–114. 10.1002/qre.3233Suche in Google Scholar

[7] G. M. Cordeiro, E. M. M. Ortega and S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst. 347 (2010), no. 8, 1399–1429. 10.1016/j.jfranklin.2010.06.010Suche in Google Scholar

[8] J. Ferrero Bermejo, J. F. Gómez Fernández, F. Olivencia Polo and A. Crespo Márquez, A review of the use of artificial neural network models for energy and reliability prediction, Appl. Sci. 9 (2019), no. 9, Article ID 1844. 10.3390/app9091844Suche in Google Scholar

[9] M. Finkelstein, On the reversed hazard rate, Reliab. Eng. Syst. Safety 78 (2002), 71–75. 10.1016/S0951-8320(02)00113-8Suche in Google Scholar

[10] M. C. Liu, W. Kuo and T. Sastri, An exploratory study of a neural network approach for reliability data analysis, Qual. Reliab. Eng. Int 11 (1995), no. 2, 107–112. 10.1002/qre.4680110206Suche in Google Scholar

[11] J. P. Mills, Table of the ratio: Area to bounding ordinate, for any portion of normal curve, Biometrika 18 (1926), no. 3–4, 395–400. 10.1093/biomet/18.3-4.395Suche in Google Scholar

[12] A. Shafiq, A. B. Çolak, S. A. Lone, T. N. Sindhu and T. Muhammad, Reliability modeling and analysis of mixture of exponential distributions using artificial neural network, Math. Methods Appl. Sci. 47 (2024), no. 5, 3308–3328. 10.1002/mma.8178Suche in Google Scholar

[13] A. Shafiq, A. B. Çolak and T. Naz Sindhu, Designing artificial neural network of nanoparticle diameter and solid-fluid interfacial layer on single-walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles, Internat. J. Numer. Methods Fluids 93 (2021), no. 12, 3384–3404. 10.1002/fld.5038Suche in Google Scholar

[14] A. Shafiq, A. B. Çolak, T. N. Sindhu, S. A. Lone and T. A. Abushal, Modeling and survival exploration of breast carcinoma: A statistical, maximum likelihood estimation, and artificial neural network perspective, Artif. Intell. Life Sci., 4 (2023), Article ID 100082. 10.1016/j.ailsci.2023.100082Suche in Google Scholar

[15] A. Shafiq, A. B. Çolak, T. N. Sindhu, S. A. Lone, A. Alsubie and F. Jarad, Comparative study of artificial neural network versus parametric method in COVID-19 data analysis, Results Phys. 38 (2022), Article ID 105613. 10.1016/j.rinp.2022.105613Suche in Google Scholar PubMed PubMed Central

[16] A. Shafiq, A. B. Çolak, T. N. Sindhu and T. Muhammad, Optimization of Darcy–Forchheimer squeezing flow in nonlinear stratified fluid under convective conditions with artificial neural network, Heat Transf. Res. 53 (2022), no. 3, 67–89. 10.1615/HeatTransRes.2021041018Suche in Google Scholar

[17] A. Shafiq, A. B. Çolak, C. Swarup, T. N. Sindhu and S. A. Lone, Reliability analysis based on mixture of Lindley distributions with artificial neural network, Adv. Theory Simul. 5 (2022), no. 8, Article ID 2200100. 10.1002/adts.202200100Suche in Google Scholar

[18] T. N. Sindhu, A. B. Çolak, S. A. Lone, A. Shafiq and T. A. Abushal, A decreasing failure rate model with a novel approach to enhance the artificial neural network’s structure for engineering and disease data analysis, Tribology Internat 192 (2024), Article ID 109231. 10.1016/j.triboint.2023.109231Suche in Google Scholar

[19] T. N. Sindhu, A. Shafiq and Z. Huassian, Generalized exponentiated unit Gompertz distribution for modeling arthritic pain relief times data: Classical approach to statistical inference, J. Biopharmaceutical Stat. 34 (2024), no. 3, 323–348. 10.1080/10543406.2023.2210681Suche in Google Scholar PubMed

[20] R. M. Usman and M. A. U. Haq, Some remarks on odd Burr III Weibull distribution, Ann. Data Sci. 6 (2019), 21–38. 10.1007/s40745-019-00191-xSuche in Google Scholar

[21] I. Waini, A. Ishak and I. Pop, Dufour and Soret effects on Al 2 O 3 -water nanofluid flow over a moving thin needle: Tiwari and Das model, Int. J. Numer. Methods Heat Fluid Flow 31 (2021), no. 3, 766–782. 10.1108/HFF-03-2020-0177Suche in Google Scholar

[22] D. R. Wingo, Maximum likelihood methods for fitting the Burr type XII distribution to life test data, Biometrical J. 25 (1983), no. 1, 77–84. 10.1002/bimj.19830250109Suche in Google Scholar

Received: 2024-06-02
Revised: 2024-10-08
Accepted: 2024-10-27
Published Online: 2024-11-14
Published in Print: 2025-05-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2024-0023/html?lang=de
Button zum nach oben scrollen