Startseite Cumulative Entropy and Income Analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cumulative Entropy and Income Analysis

  • N. Unnikrishnan Nair und B. Vineshkumar ORCID logo EMAIL logo
Veröffentlicht/Copyright: 3. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work, we investigate the applications of cumulative entropy as a tool in income analysis. The relationships the cumulative entropy has with income gap ratio, Lorenz curve, Gini index, Bonferroni curve and Zenga curve are provided. Applications of the results to real data are illustrated.

MSC 2010: 94A17; 91B82; 91B70

References

[1] A. B. Atkinson, On the measurement of inequality, J. Econom. Theory 2 (1970), 244–263. 10.1016/0022-0531(70)90039-6Suche in Google Scholar

[2] F. Belzunce, J. Candel and J. M. Ruiz, Ordering and asymptotic properties of residual income distributions, Sankhyā Ser. B 60 (1998), no. 2, 331–348. Suche in Google Scholar

[3] F. A. Cowell and K. Kuga, Additivity and the entropy concept: An axiomatic approach to inequality measurement, J. Econom. Theory 25 (1981), no. 1, 131–143. 10.1016/0022-0531(81)90020-XSuche in Google Scholar

[4] A. Di Crescenzo and M. Longobardi, On cumulative entropies, J. Statist. Plann. Inference 139 (2009), no. 12, 4072–4087. 10.1016/j.jspi.2009.05.038Suche in Google Scholar

[5] F. Greselin, L. Pasquazzi and R. Zitikis, Zenga’s new index of economic inequality, its estimation, and an analysis of incomes in Italy, J. Probab. Stat. 2010 (2010), Article ID 718905. 10.1155/2010/718905Suche in Google Scholar

[6] N. H. Haritha, N. U. Nair and K. R. M. Nair, Modelling incomes using generalized lambda distributions, J. Income Distrib. 17 (2008), 37–51. 10.25071/1874-6322.17811Suche in Google Scholar

[7] N. U. Nair, K. R. M. Nair and N. Sreelakshmi, Some properties of new Zenga curve, Stat. Appl. 10 (2012), 43–52. Suche in Google Scholar

[8] N. U. Nair, P. G. Sankaran and N. Balakrishnan, Quantile-Based Reliability Analysis, Stat. Ind. Technol., Springer, New York, 2013. 10.1007/978-0-8176-8361-0Suche in Google Scholar

[9] N. U. Nair, P. G. Sankaran and B. Vineshkumar, The Govindarajulu distribution: Some properties and applications, Comm. Statist. Theory Methods 41 (2012), no. 24, 4391–4406. 10.1080/03610926.2011.573168Suche in Google Scholar

[10] J. K. Ord, G. P. Patil and C. Taillie, The choice of a distribution to describe personal incomes, unpublished manuscript, 1978. Suche in Google Scholar

[11] J. K. Ord, G. P. Patil and C. Taillie, The choice of a distribution to describe personal incomes, Statistical Distributions in Scientific Work. Vol. 6, NATO Adv. Study Inst. Ser. C Math. Phys. Sci. 79, Reidel, Dordrecht (1981), 193–201. 10.1007/978-94-009-8555-1_13Suche in Google Scholar

[12] M. Polisicchio, The continuous random variable with uniform point inequality measure I ( p ) , Stat. Appl. 1 (2008), 137–151. Suche in Google Scholar

[13] S. Pundir, S. Arora and K. Jain, Bonferroni curve and the related statistical inference, Statist. Probab. Lett. 75 (2005), no. 2, 140–150. 10.1016/j.spl.2005.05.024Suche in Google Scholar

[14] M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory 50 (2004), no. 6, 1220–1228. 10.1109/TIT.2004.828057Suche in Google Scholar

[15] N. Rohde, An alternative functional form for estimating the Lorenz curve, Econom. Lett. 105 (2009), no. 1, 61–63. 10.1016/j.econlet.2009.05.015Suche in Google Scholar

[16] A. Sen, Poverty: An ordinal approach to measurement, Econometrica 44 (1976), no. 2, 219–231. 10.2307/1912718Suche in Google Scholar

[17] P. K. Sen, The Gini coefficient and poverty indexes: Some reconciliations, J. Amer. Statist. Assoc. 81 (1986), no. 396, 1050–1057. 10.1080/01621459.1986.10478372Suche in Google Scholar

[18] N. Takayama, Poverty, income inequality, and their measures: Professor Sen’s axiomatic approach reconsidered, Econometrica 47 (1979), no. 3, 747–759. 10.2307/1910420Suche in Google Scholar

[19] A. Tarsitano, Fitting the generalized lambda distribution to income data, COMPSTAT 2004—Proceedings in Computational Statistics. Springer, Heidelberg, (2004), 1861–1867. Suche in Google Scholar

[20] H. Theil, Economics and Information Theory, North-Holland, Amsterdam, 1967. Suche in Google Scholar

[21] M. Zenga, Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, Stat. Appl 5 (2007), 3–27. Suche in Google Scholar

Received: 2022-03-07
Revised: 2022-07-04
Accepted: 2022-07-05
Published Online: 2022-08-03
Published in Print: 2022-12-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2022-0012/pdf
Button zum nach oben scrollen