Startseite Wirtschaftswissenschaften Bayesian Estimation of an M/M/đť‘… Queue with Heterogeneous Servers Using Markov Chain Monte Carlo Method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bayesian Estimation of an M/M/đť‘… Queue with Heterogeneous Servers Using Markov Chain Monte Carlo Method

  • V. Deepthi ORCID logo EMAIL logo und Joby K. Jose ORCID logo
Veröffentlicht/Copyright: 6. November 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider the Bayesian inference of M/M/𝑅 queue with 𝑅 heterogeneous servers with service rates μ1,μ2,…,μR, where μ1>μ2>⋯>μR. Assuming multivariate gamma prior distribution for service rates and gamma prior distribution for arrival rate 𝜆, we derive the conditional posterior densities of mean arrival rate and mean service rates. We apply the Markov chain Monte Carlo method and compute the Bayes estimates and credible interval for the M/M/3 queue, as a particular case of the M/M/𝑅 queue under squared error loss function, entropy loss function and linex loss function corresponding to a different set of hyperparameters.

MSC 2010: 62M05; 62F15

References

[1] R. Calibria and G. Pulcini, Point estimation under asymmetric loss function for left truncated exponential samples, Comm. Statist. Theory Methods 25 (1996), 585–600. 10.1080/03610929608831715Suche in Google Scholar

[2] R. I. David, W. Michael and R. Fabrizio, Bayesian analysis of M/Er/1 and M/Hk/1 queues, Queuing Syst 30 (1998), 289–308. 10.1023/A:1019173206509Suche in Google Scholar

[3] D. Gross and P. Harris, Fundamentals of Queueing Theory, 3rd ed., Wiley, New York, 1998. Suche in Google Scholar

[4] W. K. Hastings, Monte Carlo sampling using Markov chain and their applications, Biometrika 57 (1970), 97–109. 10.1093/biomet/57.1.97Suche in Google Scholar

[5] J. K. Jose and V. Deepthi, Bayesian inference of Markovian queueing model with two heterogeneous servers, Stoch. Model. Appl. Probab. 24 (2020), 1–14. Suche in Google Scholar

[6] L. B. Klebnov, Universal loss function and unbiased estimation, Dokl. Akad. Nank SSSR Soviet Maths. Dokl. 203 (1972), 1249–1251. Suche in Google Scholar

[7] M. Landauskas and E. Valakevieius, MCMC approach to modelling queueing systems, Liet. Mat. Rink. 21 (2010), 285–290. Suche in Google Scholar

[8] A. M. Mathai and P. G. Moschopoulos, A form of multivariate gamma distribution, Ann. Inst. Statist. Math. 44 (1992), 97–106. 10.1007/BF00048672Suche in Google Scholar

[9] J. Medhi, Stochastic Models in Queueing Theory, Academic Press, New York, 1991. Suche in Google Scholar

[10] N. Metropolis, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machine, J. Chem. Phys. 21 (1953), 1087–1091. 10.2172/4390578Suche in Google Scholar

[11] W. Wang, V. Casale and C. Sutton, A Bayesian approach to parameter inference in queueing networks, ACM Trans. Model. Comput. Simul. 27 (2016), 1–26. 10.1145/2893480Suche in Google Scholar

[12] A. Zellner, Bayesian methods and prediction using asymmetric loss function, J. Amer. Statist. Assoc. 81 (1986), 446–451. 10.1080/01621459.1986.10478289Suche in Google Scholar

Received: 2020-06-09
Revised: 2020-10-22
Accepted: 2020-10-22
Published Online: 2020-11-06
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2020-0010/html?lang=de
Button zum nach oben scrollen