Startseite Notes on Cumulative Entropy as a Risk Measure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Notes on Cumulative Entropy as a Risk Measure

  • Saeid Tahmasebi EMAIL logo und Hojat Parsa
Veröffentlicht/Copyright: 19. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Di Crescenzo and Longobardi [Di Crescenzo and Longobardi, On cumulative entropies, J. Statist. Plann. Inference 139 2009, 12, 4072–4087] proposed the cumulative entropy (CE) as an alternative to the differential entropy. They presented an estimator of CE using empirical approach. In this paper, we consider a risk measure based on CE and compare it with the standard deviation and the Gini mean difference for some distributions. We also make empirical comparisons of these measures using samples from stock market in members of the Organization for Economic Co-operation and Development (OECD) countries.

MSC 2010: 60E15; 62B10; 62N05

References

[1] M. Asadi and Y. Zohrevand, On the dynamic cumulative residual entropy, J. Statist. Plann. Inference 137 (2007), no. 6, 1931–1941. 10.1016/j.jspi.2006.06.035Suche in Google Scholar

[2] R. Davidson, Reliable inference for the Gini index, J. Econometrics 150 (2009), no. 1, 30–40. 10.1016/j.jeconom.2008.11.004Suche in Google Scholar

[3] A. Di Crescenzo and M. Longobardi, On cumulative entropies, J. Statist. Plann. Inference 139 (2009), no. 12, 4072–4087. 10.1016/j.jspi.2009.05.038Suche in Google Scholar

[4] A. Di Crescenzo and A. Toomaj, Further results on the generalized cumulative entropy, Kybernetika (Prague) 53 (2017), no. 5, 959–982. 10.14736/kyb-2017-5-0959Suche in Google Scholar

[5] S. Kapodistria and G. Psarrakos, Some extensions of the residual lifetime and its connection to the cumulative residual entropy, Probab. Engrg. Inform. Sci. 26 (2012), no. 1, 129–146. 10.1017/S0269964811000271Suche in Google Scholar

[6] J. Navarro, Y. del Aguila and M. Asadi, Some new results on the cumulative residual entropy, J. Statist. Plann. Inference 140 (2010), no. 1, 310–322. 10.1016/j.jspi.2009.07.015Suche in Google Scholar

[7] J. Navarro and G. Psarrakos, Characterizations based on generalized cumulative residual entropy functions, Comm. Statist. Theory Methods 46 (2017), no. 3, 1247–1260. 10.1080/03610926.2015.1014111Suche in Google Scholar

[8] G. Psarrakos and J. Navarro, Generalized cumulative residual entropy and record values, Metrika 76 (2013), no. 5, 623–640. 10.1007/s00184-012-0408-6Suche in Google Scholar

[9] G. Psarrakos and A. Toomaj, On the generalized cumulative residual entropy with applications in actuarial science, J. Comput. Appl. Math. 309 (2017), 186–199. 10.1016/j.cam.2016.06.037Suche in Google Scholar

[10] C. M. Ramsay, Loading gross premiums for risk without using utility theory, Trans. Soc. Actuar. 45 (1993), 305–349. Suche in Google Scholar

[11] M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory 50 (2004), no. 6, 1220–1228. 10.1109/TIT.2004.828057Suche in Google Scholar

[12] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–432. 10.1002/j.1538-7305.1948.tb01338.xSuche in Google Scholar

[13] M. A. Sordo and G. Psarrakos, Stochastic comparisons of interfailure times under a relevation replacement policy, J. Appl. Probab. 54 (2017), no. 1, 134–145. 10.1017/jpr.2016.91Suche in Google Scholar

[14] A. Toomaj, S. M. Sunoj and J. Navarro, Some properties of the cumulative residual entropy of coherent and mixed systems, J. Appl. Probab. 54 (2017), no. 2, 379–393. 10.1017/jpr.2017.6Suche in Google Scholar

[15] L. Yang, Study on cumulative residual entropy and variance as risk measure, Fifth International Conference on Business Intelligence and Financial Engineering, IEEE Press, Piscataway (2012), 210–213. 10.1109/BIFE.2012.52Suche in Google Scholar

Received: 2018-07-29
Revised: 2018-12-03
Accepted: 2018-12-03
Published Online: 2018-12-19
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2018-0019/html
Button zum nach oben scrollen