Startseite Reliability Test Plans for Percentiles Based on the Harris Generalized Linear Exponential Distribution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reliability Test Plans for Percentiles Based on the Harris Generalized Linear Exponential Distribution

  • K. K. Jose EMAIL logo und Albin Paul
Veröffentlicht/Copyright: 21. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a generalization of the Harris family of distributions, namely, the Harris generalized linear exponential distribution is discussed. The use of the model is established by fitting it to a real data set. Also, we derive a reliability test plan for acceptance or rejection of a lot of products submitted for inspection with lifetimes following this distribution.

MSC 2010: 62N05; 60E05

Award Identifier / Grant number: Emeritus Scientist Fellowship

Funding statement: The authors also gratefully acknowledge the financial assistance towards this research under Emeritus Scientist scheme of KSCSTE, Government of Kerala, Thiruvananthapuram.

Acknowledgements

The authors express their sincere gratitude to the reviewers for the valuable suggestions for improving the presentation of the paper.

References

[1] M. V. Aarset, How to identify bathtub hazard rate, IEEE Trans. Reliab. 36 (1987), 106–108. 10.1109/TR.1987.5222310Suche in Google Scholar

[2] E.-E. A. A. Aly and L. Benkherouf, A new family of distributions based on probability generating functions, Sankhya B 73 (2011), no. 1, 70–80. 10.1007/s13571-011-0017-9Suche in Google Scholar

[3] A. Batsidis and A. J. Lemonte, On the Harris extended family of distributions, Statistics 49 (2015), no. 6, 1400–1421. 10.1080/02331888.2014.969732Suche in Google Scholar

[4] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Statistics 25 (1954), 555–564. 10.1214/aoms/1177728723Suche in Google Scholar

[5] T. E. Harris, Branching processes, Ann. Math. Statistics 19 (1948), 474–494. 10.1214/aoms/1177730146Suche in Google Scholar

[6] K. K. Jose and S. Rani, Marshall–Olkin Morgenstern–Weibull distribution: Generalisations and applications, Econ. Qual. Control 28 (2013), no. 2, 105–116. 10.1515/eqc-2013-0018Suche in Google Scholar

[7] K. K. Jose and S. Remya, Negative binomial Marshall–Olkin Rayleigh distribution and its applications, Econ. Qual. Control 30 (2015), no. 2, 89–98. 10.1515/eqc-2015-0009Suche in Google Scholar

[8] R. R. L. Kantam, K. Rosaiah and G. Srinivasa Rao, Acceptance sampling based on life tests: Log-logistic model, Journal of Applied Statistics 28 (2001), no. 1, 121–128, 10.1080/02664760120011644Suche in Google Scholar

[9] R. R. L. Kantam and K. Rosaiah, Half logistic distribution in acceptance sampling based on life tests, IAPQR Transactions 23 (1998), no. 2, 117–125. Suche in Google Scholar

[10] E. Krishna, K. K. Jose and M. M. Ristić, Applications of Marshall–Olkin Fréchet distribution, Comm. Statist. Simulation Comput. 42 (2013), no. 1, 76–89. 10.1080/03610918.2011.633196Suche in Google Scholar

[11] Y. L. Lio, T.-R. Tsai and S.-J. Wu, Acceptance sampling plans from truncated life tests based on the Birnbaum–Saunders distribution for percentiles, Comm. Statist. Simulation Comput. 39 (2010), no. 1, 119–136. 10.1080/03610910903350508Suche in Google Scholar

[12] A. W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), no. 3, 641–652. 10.1093/biomet/84.3.641Suche in Google Scholar

[13] B. S. Rao, M. C. Priya and R. R. L. Kantam, Acceptance sampling plans for percentiles assuming the linear failure rate distribution, Econ. Qual. Control 29 (2014), 1–9. Suche in Google Scholar

[14] R. R. L. Ratnam, K. Rosaiah and M. S. R. Anjaneyulu, Estimation of reliability in multicomponent stress-strength model: Half logistic distribution, IAPQR Trans. 25 (2000), no. 1, 43–52. Suche in Google Scholar

[15] K. Rosaiah and R. R. L. Kantam, Acceptance sampling based on the inverse Rayleigh distribution, Econ. Qual. Control 20 (2005), no. 2, 277–286. 10.1515/EQC.2005.277Suche in Google Scholar

[16] G. Srinivasa Rao, M. E. Ghitany and R. R. L. Kantam, Marshall–Olkin extended Lomax distribution: An economic reliability test plan, Int. J. Appl. Math. 22 (2009), no. 1, 139–148. Suche in Google Scholar

[17] T.-R. Tsai and S.-J. Wu, Acceptance sampling based on truncated life tests for generalized Rayleigh distribution, J. Appl. Stat. 33 (2006), no. 6, 595–600. 10.1080/02664760600679700Suche in Google Scholar

[18] A. Wood, Predicting software reliability, IEEE Trans. Softw. Eng. 22 (1996), 69–77. 10.1109/2.544240Suche in Google Scholar

Received: 2017-10-29
Revised: 2018-3-3
Accepted: 2018-3-3
Published Online: 2018-3-21
Published in Print: 2018-6-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2017-0025/html
Button zum nach oben scrollen