Abstract
This article introduces a new lifetime distribution called the transmuted Erlang-truncated exponential (TETE) distribution. This new distribution generalizes the two parameter Erlang-truncated exponential (ETE) distribution. Closed form expressions for some of its distributional and reliability properties are provided. The method of maximum likelihood estimation was proposed for estimating the parameters of the TETE distribution. The hazard rate function of the TETE distribution can be constant, increasing or decreasing depending on the value of the transmutation parameter
Funding statement: The first author acknowledges the support of the University of Manchester, United Kingdom, in producing this article.
Acknowledgements
The authors wish to thank the anonymous reviewers whose constructive comments helped to improve this article.
References
[1] Abdul-Moniem I. B. and Seham M., Transmuted Gompertz distribution, Comput. Appl. Math. J. 1 (2015), no. 3, 88–96. Suche in Google Scholar
[2] Afify A. Z., Nofal Z. M., Yousof H. M., El Gebaly Y. M. and Butt N. S., The transmuted Weibull lomax distribution: Properties and application, Pak. J. Stat. Oper. Res. 11 (2015), no. 1, 135–152. 10.18187/pjsor.v11i1.956Suche in Google Scholar
[3] Ahmad A., Ahmad S. P. and Ahmed A., Transmuted inverse rayleigh distribution: A generalization of the inverse Rayleigh distribution, Math. Theory Model. 4 (2014), no. 7, 90–98. Suche in Google Scholar
[4] Aryal G. R., Transmuted log-logistic distribution, J. Stat. Appl. Pro. 2 (2013), no. 1, 11–20. 10.12785/jsap/020102Suche in Google Scholar
[5] Aryal G. R. and Tsokos C. P., On the transmuted extreme value distribution with application, Nonlinear Anal. 71 (2009), no. 12, 1401–1407. 10.1016/j.na.2009.01.168Suche in Google Scholar
[6] Aryal G. R. and Tsokos C. P., Transmuted Weibull distribution: A generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math. 4 (2011), no. 2, 89–102. Suche in Google Scholar
[7] Ashour S. K. and Eltehiwy M. A., Transmuted exponentiated lomax Distribution, Aust. J. Basic Appl. Sci. 7 (2013), no. 7, 658–667. Suche in Google Scholar
[8] Ashour S. K. and Eltehiwy M. A., Transmuted lomax distribution, Amer. J. Appl. Math. Stat. 1 (2013), no. 6, 121–127. 10.12691/ajams-1-6-3Suche in Google Scholar
[9] Dey S. K., Kumar D. and Park C., Transmuted gamma-mixed Rayleigh distribution: Properties and estimation with bladder cancer data example, preprint 2015. 10.3233/MAS-160374Suche in Google Scholar
[10] El-Alosey A. R., Random sum of new type of mixture of distribution, Int. J. Stat. Syst. 2 (2007), 49–57. Suche in Google Scholar
[11] Elbatal I., Transmuted generalized inverted exponential distribution, Econom. Qual. Control 28 (2013), no. 2, 125–133. 10.1515/eqc-2013-0020Suche in Google Scholar
[12] Elbatal I., Transmuted modified inverse Weibull distribution: A Generalization of the modified inverse Weibull probability distribution, Int. J. Math. Arch. 4 (2013), no. 8, 117–129. Suche in Google Scholar
[13] Elbatal I., Asha G. and Raja A., Transmuted exponentiated Fréchet distribution: Properties and applications, J. Stat. Appl. Pro. 3 (2014), no. 3, 379–394. Suche in Google Scholar
[14] Elbatal I., Diab L. S. and Alim N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl. 83 (2013), no. 17, 29–37. 10.5120/14671-2681Suche in Google Scholar
[15] Elbatal I. and Elgarhy M., Transmuted quasi Lindley distribution: A generalization of the quasi Lindley distribution, Int. J. Pure Appl. Sci. Technol. 18 (2013), no. 2, 59–70. Suche in Google Scholar
[16] Hussian M. A., Transmuted exponentiated gamma distribution: A generalization of the exponentiated gamma probability distribution, Appl. Math. Sci. 8 (2014), no. 27, 1297–1310. 10.12988/ams.2014.42105Suche in Google Scholar
[17] Inlow M., A moment generating function proof of the Lindeberg–Lévy central limit theorem, Amer. Stat. 64 (2010), no. 3, 228–230. 10.1198/tast.2010.09159Suche in Google Scholar
[18] Khan M. S. and King R., Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, Eur. J. Pure Appl. Math. 6 (2013), no. 1, 66–88. Suche in Google Scholar
[19] Khan M. S. and King R., Transmuted modified inverse Rayleigh distribution, Aust. J. Stat. 44 (2015), no. 3, 17–29. 10.17713/ajs.v44i3.21Suche in Google Scholar
[20] Khan M. S., King R. and Hudson I. L., Transmuted Kumaraswamy distribution, Statistics 17 (2016), no. 2, 1–28. 10.21307/stattrans-2016-013Suche in Google Scholar
[21] Mahmoud M. R. and Mandouh R. M., On The transmuted Fréchet distribution, J. Appl. Sci. Res. 9 (2013), no. 10, 5553–5561. Suche in Google Scholar
[22] Mansour M. M., Enayat M. A., Hamed S. M. and Mohamed M. S., A new transmuted additive Weibull distribution based on a new method for adding a parameter to a family of distributions, Int. J. Appl. Math. Sci. 8 (2015), no. 1, 31–54. Suche in Google Scholar
[23] Mansour M. M. and Mohamed S. M., A new generalized of transmuted Lindley distribution, Appl. Math. Sci. 9 (2015), no. 55, 2729–2748. 10.12988/ams.2015.52158Suche in Google Scholar
[24] McLeish D., Simulating random variables using moment-generating functions and the saddlepoint approximation, J. Stat. Comput. Simul. 84 (2014), no. 2, 324–334. 10.1080/00949655.2012.708343Suche in Google Scholar
[25] Meintanis S. G., Testing skew normality via the moment generating function, Math. Methods Statist. 19 (2010), no. 1, 64–72. 10.3103/S1066530710010047Suche in Google Scholar
[26] Merovci F., Transmuted exponentiated exponential distribution, Math. Sci. Appl. E-Notes 1 (2013), no. 2, 112–122. Suche in Google Scholar
[27] Merovci F., Transmuted Lindley distribution, Int. J. Open Problems Compt. Math. 6 (2013), no. 2, 63–72. 10.12816/0006170Suche in Google Scholar
[28] Merovci F., Transmuted Rayleigh distribution, Aust. J. Stat. 42 (2013), no. 1, 21–31. 10.17713/ajs.v42i1.163Suche in Google Scholar
[29] Merovci F. and Elbatal I., Transmuted Lindley-geometric distribution and its applications, J. Stat. Appl. Pro. 3 (2014), no. 1, 77–91. 10.18576/jsap/030107Suche in Google Scholar
[30] Merovci F. and Puka L., Transmuted Pareto distribution, ProbStat Forum 7 (2014), 1–11. Suche in Google Scholar
[31] Pal M. and Tiensuwan M., The beta transmuted Weibull distribution, Aust. J. Stat. 43 (2014), no. 2, 133–149. 10.17713/ajs.v43i2.37Suche in Google Scholar
[32] Quesenberry C. P. and Kent J., Selecting among probability distributions used in reliability, Technometrics 24 (1982), no. 1, 59–65. 10.1080/00401706.1982.10487710Suche in Google Scholar
[33] Saboor A., Elbatal I. and Cordeiro G. M., The transmuted exponentiated Weibull geometric distribution: Theory and applications, Hacet. J. Math. Stat. 45 (2016), no. 3, 973–987. 10.15672/HJMS.20156410830Suche in Google Scholar
[34] Shaw W. T. and Buckley I. R., The alchemy of probability distributions: Beyond Gram–Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, preprint 2009, https://arxiv.org/abs/0901.0434. Suche in Google Scholar
[35] Song K. S., Rényi information, loglikelihood and an intrinsic distribution measure, J. Statist. Plann. Inference 93 (2001), no. 1, 51–69. 10.1016/S0378-3758(00)00169-5Suche in Google Scholar
[36] Tian Y., Tian M. and Zhu Q., Transmuted linear exponential distribution: A new generalization of the linear exponential distribution, Comm. Statist. Simulation Comput. 43 (2014), no. 10, 2661–2677. 10.1080/03610918.2013.763978Suche in Google Scholar
[37] ul Haq M. A., Butt N. S., Usman R. M. and Fattah A. A., Transmuted power function distribution, Gazi Univ. J. Sci. 29 (2016), no. 1, 177–185. Suche in Google Scholar
[38] Villa E. R. and Escobar L. A., Using moment generating functions to derive mixture distributions, Amer. Statist. 60 (2012), no. 1, 75–80. 10.1198/000313006X90819Suche in Google Scholar
[39] von Waldenfels W., Proof of an algebraic central limit theorem by moment generating functions, Stochastic Processes – Mathematics and Physics II, Lecture Notes in Math. 1250, Springer, Berlin (1987), 342–347. 10.1007/BFb0077366Suche in Google Scholar
© 2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Characterizations of Kumaraswamy Laplace Distribution with Applications
- Transmuted Erlang-Truncated Exponential Distribution
- Acceptance Sampling Plans Based on Truncated Lifetime Tests for Transmuted Inverse Rayleigh Distribution
- Double Acceptance Sampling Plan for Time-Truncated Life Tests Based on Half Normal Distribution
Artikel in diesem Heft
- Frontmatter
- Characterizations of Kumaraswamy Laplace Distribution with Applications
- Transmuted Erlang-Truncated Exponential Distribution
- Acceptance Sampling Plans Based on Truncated Lifetime Tests for Transmuted Inverse Rayleigh Distribution
- Double Acceptance Sampling Plan for Time-Truncated Life Tests Based on Half Normal Distribution