Startseite Double Acceptance Sampling Plan for Time-Truncated Life Tests Based on Half Normal Distribution
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Double Acceptance Sampling Plan for Time-Truncated Life Tests Based on Half Normal Distribution

  • Amer I. Al-Omari EMAIL logo , Amjad D. Al-Nasser und Fatima Salem Gogah
Veröffentlicht/Copyright: 12. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, we investigate a double acceptance sampling plan (DASP) based on truncated life tests when the lifetime of a product follows the half normal distribution. By fixing the consumer’s confidence level, the minimum sample sizes of the first and second samples needful to assert the specified mean life are calculated. The operating characteristic values and the minimum ratios of the mean life to the specified life are also analyzed. Several important tables are provided and a numerical example is given to illustrate the results.

MSC 2010: 62D05

References

[1] Al-Nasser A. D. and Al-Omari A. I., Acceptance sampling plan based on truncated life tests for exponentiated Frechet distribution, J. Stat. Manag. Syst. 16 (2013), no. 1, 13–24. 10.1080/09720510.2013.777571Suche in Google Scholar

[2] Aslam M. and Jun C.-H., A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters, J. Appl. Stat. 37 (2010), no. 3, 405–414. 10.1080/02664760802698979Suche in Google Scholar

[3] Baklizi A., El Masri A. and Al-Nasser A. D., Acceptance sampling plans in the Rayleigh model, Korean Commun. Stat. 12 (2005), no. 1, 11–18. 10.5351/CKSS.2005.12.1.011Suche in Google Scholar

[4] Balakrishnan N., Leiva V. and Lopez J., Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution, Comm. Statist. Simulation Comput. 36 (2007), 643–656. 10.1080/03610910701207819Suche in Google Scholar

[5] Duncan A., Quality Control and Industrial Statistics, 5th ed., Richard D. Irwin, Homewood, 1986. Suche in Google Scholar

[6] Gui W., Double acceptance sampling plan for time truncated life tests based on Maxwell distribution, Amer. J. Math. Management Sci. 33 (2014), 98–109. 10.1080/01966324.2014.894895Suche in Google Scholar

[7] Gupta S. S. Life test sampling plans for normal and lognormal distribution, Technometrics 4 (1962), 151–175. 10.1080/00401706.1962.10490002Suche in Google Scholar

[8] Gupta S. S. and Groll P. A., Gamma distribution in acceptance sampling based on life tests, J. Amer. Statist. Assoc. 56 (1961), 942–970. 10.1080/01621459.1961.10482137Suche in Google Scholar

[9] Kantam R. R. L., Rosaiah K. and Rao G. S., Acceptance sampling based on life tests: Log-logistic model, J. Appl. Stat. 28 (2001), 121–128. 10.1080/02664760120011644Suche in Google Scholar

[10] Khan M. A. and Mateen-ul Islam H., On system reliability for multi component half normal life time, Electron. J. Appl. Stat. Anal. 5 (2012), no. 1, 132–136. Suche in Google Scholar

[11] Ramaswamy A. S. and Anburajan P., Double acceptance sampling based on truncated life tests in generalized exponential distribution, Appl. Math. Sci. 6 (2012), no. 64, 3199–3207. Suche in Google Scholar

[12] Rao S. S., Double acceptance sampling plans based on truncated life tests for the Marshall–Olkin extended exponential distribution, Austrian J. Stat. 40 (2011), no. 3, 169–176. 10.17713/ajs.v40i3.208Suche in Google Scholar

Received: 2016-2-28
Revised: 2016-5-21
Accepted: 2016-7-15
Published Online: 2016-8-12
Published in Print: 2016-12-1

© 2016 by De Gruyter

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2016-0004/html?lang=de
Button zum nach oben scrollen