Startseite Clinical drug-drug interactions: focus on venlafaxine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Clinical drug-drug interactions: focus on venlafaxine

  • Paulo Magalhães , Gilberto Alves EMAIL logo , Adrián LLerena und Amílcar Falcão
Veröffentlicht/Copyright: 18. Juni 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Venlafaxine (VEN) is an antidepressant agent widely used nowadays as an alternative to selective serotonin reuptake inhibitors (SSRIs), particularly for the treatment of SSRI-resistant depression. As the co-administration of antidepressant drugs with other medications is very common in clinical practice, the potential risk for pharmacokinetic and/or pharmacodynamic drug interactions that may be clinically meaningful increases. Bearing in mind that VEN has exhibited large variability in antidepressant response, besides the individual genetic background, several other factors may contribute to those variable clinical outcomes, such as the occurrence of significant drug-drug interactions. Indeed, the presence of drug interactions is possibly one of the major reasons for interindividual variability, and their anticipation should be considered in conjugation with other specific patients’ characteristics to optimize the antidepressant therapy. Hence, a comprehensive overview of the pharmacokinetic- and pharmacodynamic-based drug interactions involving VEN is herein provided, particularly addressing their clinical relevance.


Corresponding author: Gilberto Alves, PharmD, PhD, Faculty of Health Sciences, University of Beira Interior, CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal, Phone: +351 275 329002, Fax: +351 275 329099, E-mail:

References

1. World Health Organization. Depression: a global crisis; 2012. Available from: http://www.who.int/mental_health/management/depression/wfmh_paper_depression_wmhd_2012.pdf?ua=1. Accessed on 25 May, 2013.Suche in Google Scholar

2. McElroy SL, Guerdjikova AI, Mori N, O’Melia AM. Current pharmacotherapy options for bulimia nervosa and binge eating disorder. Expert Opin Pharmacother 2012;13:2015–26.10.1517/14656566.2012.721781Suche in Google Scholar

3. Karsnitz DB, Ward S. Spectrum of anxiety disorders: diagnosis and pharmacologic treatment. J Midwifery Womens Health 2011;56:266–81.10.1111/j.1542-2011.2011.00045.xSuche in Google Scholar

4. Mercier A, Auger-Aubin I, Lebeau J-P, Schuers M, Boulet P, Hermil J-L, et al. Evidence of prescription of antidepressants for non-psychiatric conditions in primary care: an analysis of guidelines and systematic reviews. BMC Fam Pract 2013;14:55.10.1186/1471-2296-14-55Suche in Google Scholar

5. Spina E, Trifirò G, Caraci F. Clinically significant drug interactions with newer antidepressants. CNS Drugs 2012;26:39–67.10.2165/11594710-000000000-00000Suche in Google Scholar

6. Ereshefsky L, Dugan D. Review of the pharmacokinetics, pharmacogenetics, and drug interaction potential of antidepressants: focus on venlafaxine. Depress Anxiety 2000;12 Suppl:30–44.10.1002/1520-6394(2000)12:1+<30::AID-DA4>3.0.CO;2-GSuche in Google Scholar

7. Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther 2008;30:1206–27.10.1016/S0149-2918(08)80047-1Suche in Google Scholar

8. Owen JR, Nemeroff CB. New antidepressants and the cytochrome P450 system: focus on venlafaxine, nefazodone, and mirtazapine. Depress Anxiety1998;7 Suppl:24–32.10.1002/(SICI)1520-6394(1998)7:1+<24::AID-DA7>3.0.CO;2-FSuche in Google Scholar

9. Grundmann M, Kacirova I, Urinovska R. Therapeutic monitoring of psychoactive drugs – antidepressants: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013;157.Suche in Google Scholar

10. Gutierrez Ma, Stimmel GL, Aiso JY. Venlafaxine: a 2003 update. Clin Ther 2003;25:2138–54.10.1016/S0149-2918(03)80210-2Suche in Google Scholar

11. Philip NS, Carpenter LL, Tyrka AR, Price LH. Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother 2010;11:709–22.10.1517/14656561003614781Suche in Google Scholar

12. Horstmann S, Binder EB. Pharmacogenomics of antidepressant drugs. Pharmacol Ther 2009;124:57–73.10.1016/j.pharmthera.2009.06.007Suche in Google Scholar

13. Launiainen T, Rasanen I, Vuori E, Ojanperä I. Fatal venlafaxine poisonings are associated with a high prevalence of drug interactions. Int J Legal Med 2011;125:349–58.10.1007/s00414-010-0461-5Suche in Google Scholar

14. Veefkind AH, Haffmans PM, Hoencamp E. Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000;22:202–8.10.1097/00007691-200004000-00011Suche in Google Scholar

15. Debonnel G, Saint-André E, Hébert C, de Montigny C, Lavoie N, Blier P. Differential physiological effects of a low dose and high doses of venlafaxine in major depression. Int J Neuropsychopharmacol 2007;10:51–61.10.1017/S1461145705006413Suche in Google Scholar

16. Geber C, Ostad Haji E, Schlicht K, Hiemke C, Tadić A. Severe tremor after cotrimoxazole-induced elevation of venlafaxine serum concentrations in a patient with major depressive disorder. Ther Drug Monit 2013;35:279–82.10.1097/FTD.0b013e31828816e0Suche in Google Scholar

17. Wellington K, Perry CM. Venlafaxine extended-release: a review of its use in the management of major depression. CNS Drugs 2001;15:643–69.10.2165/00023210-200115080-00007Suche in Google Scholar

18. National Center for Biotechnology Information. Venlafaxine – PubChem. Available from: http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5656. Accessed on 13 April, 2013.Suche in Google Scholar

19. Sloan DM. Desvenlafaxine: frequently asked questions. Prim Psychiatry 2009;16:1–8.Suche in Google Scholar

20. Fogelman SM, Schmider J, Venkatakrishnan K, von Moltke LL, Harmatz JS, Shader RI, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999;20:480–90.10.1016/S0893-133X(98)00113-4Suche in Google Scholar

21. Howell SR, Husbands GE, Scatina J, Sisenwine SF. Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 1993;23:349–59.10.3109/00498259309057023Suche in Google Scholar PubMed

22. McAlpine DE, Biernacka JM, Mrazek DA, O’Kane DJ, Stevens SR, Langman LJ, et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 2011;33:14–20.10.1097/FTD.0b013e3181fcf94dSuche in Google Scholar PubMed

23. Ilett KF, Hackett LP, Dusci LJ, Roberts MJ, Kristensen JH, Paech M, et al. Distribution and excretion of venlafaxine and O-desmethylvenlafaxine in human milk. Br J Clin Pharmacol 1998;45:459–62.10.1046/j.1365-2125.1998.00710.xSuche in Google Scholar PubMed PubMed Central

24. Bachmeier CJ, Beaulieu-Abdelahad D, Ganey NJ, Mullan MJ, Levin GM. Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos 2011;32:233–44.10.1002/bdd.753Suche in Google Scholar PubMed

25. Wikinski S. Pharmacokinetic mechanisms underlying resistance in psychopharmacological treatment. The role of P-glycoprotein. Vertex 2005;16:438–41.Suche in Google Scholar

26. Thuerauf N, Fromm MF. The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci 2006;256:281–6.10.1007/s00406-006-0662-6Suche in Google Scholar PubMed

27. O’Brien FE, Dinan TG, Griffin BT, Cryan JF. Interactions between antidepressants and P-glycoprotein at the blood-brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol 2012;165:289–312.10.1111/j.1476-5381.2011.01557.xSuche in Google Scholar PubMed PubMed Central

28. Caccia S. Metabolism of the newer antidepressants. An overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998;34:281–302.10.2165/00003088-199834040-00002Suche in Google Scholar PubMed

29. Reis M, Lundmark J, Björk H, Bengtsson F. Therapeutic drug monitoring of racemic venlafaxine and its main metabolites in an everyday clinical setting. Ther Drug Monit 2002;545–53.10.1097/00007691-200208000-00014Suche in Google Scholar PubMed

30. Hermann M, Hendset M, Fosaas K, Hjerpset M, Refsum H. Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele. Eur J Clin Pharmacol 2008;64:483–7.10.1007/s00228-007-0453-7Suche in Google Scholar PubMed

31. Kennedy SH, McCann SM, Masellis M, McIntyre RS, Raskin J, McKay G, et al. Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry 2002;63:181–6.10.4088/JCP.v63n0302Suche in Google Scholar PubMed

32. Andrade C. Augmentation of venlafaxine with bupropion: risks associated with a triple monoamine reuptake inhibition approach to partially responsive depression. J Clin Psychiatry 2013;74:119–21.10.4088/JCP.13f08348Suche in Google Scholar PubMed

33. Newey CR, Khawam E, Coffman K. Two cases of serotonin syndrome with venlafaxine and calcineurin inhibitors. Psychosomatics 2011;52:286–90.10.1016/j.psym.2010.12.007Suche in Google Scholar PubMed

34. Haanpää ML, Gourlay GK, Kent JL, Miaskowski C, Raja SN, Schmader KE, et al. Treatment considerations for patients with neuropathic pain and other medical comorbidities. Mayo Clin Proc 2010;85 Suppl:15–25.10.4065/mcp.2009.0645Suche in Google Scholar PubMed PubMed Central

35. Troy SM, Rudolph R, Mayersohn M, Chiang ST. The influence of cimetidine on the disposition kinetics of the antidepressant venlafaxine. J Clin Pharmacol 1998;38:467–74.10.1002/j.1552-4604.1998.tb04455.xSuche in Google Scholar PubMed

36. Lessard E, Yessine MA, Hamelin BA, Gauvin C, Labbé L, O’Hara G, et al. Diphenhydramine alters the disposition of venlafaxine through inhibition of CYP2D6 activity in humans. J Clin Psychopharmacol 2001;21:175–84.10.1097/00004714-200104000-00009Suche in Google Scholar

37. Food and Drug Administration. Summary of product characteristics – Efexor (venlafaxine hydrochloride). Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020151s051lbl.pdf. Accessed on 26 May, 2013.Suche in Google Scholar

38. Lindh JD, Annas A, Meurling L, Dahl M-L, AL-Shurbaji A. Effect of ketoconazole on venlafaxine plasma concentrations in extensive and poor metabolisers of debrisoquine. Eur J Clin Pharmacol 2003;59:401–6.10.1007/s00228-003-0627-xSuche in Google Scholar

39. Troy SM, Parker VD, Hicks DR, Boudino FD, Chiang ST. Pharmacokinetic interaction between multiple-dose venlafaxine and single-dose lithium. J Clin Pharmacol 1996;36:175–81.10.1002/j.1552-4604.1996.tb04183.xSuche in Google Scholar

40. Gareri P, De Fazio P, Gallelli L, De Fazio S, Davoli A, Seminara G, et al. Venlafaxine-propafenone interaction resulting in hallucinations and psychomotor agitation. Ann Pharmacother 2008;42:434–8.10.1345/aph.1K405Suche in Google Scholar

41. Lessard E, Yessine MA, Hamelin BA, O’Hara G, LeBlanc J, Turgeon J. Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999;9:435–43.Suche in Google Scholar

42. Hynninen V-V, Olkkola KT, Bertilsson L, Kurkinen K, Neuvonen PJ, Laine K. Effect of terbinafine and voriconazole on the pharmacokinetics of the antidepressant venlafaxine. Clin Pharmacol Ther 2008;83:342–8.10.1038/sj.clpt.6100311Suche in Google Scholar

43. Amchin J, Zarycranski W, Taylor KP, Albano D, Klockowski PM. Effect of venlafaxine on the pharmacokinetics of alprazolam. Psychopharmacol Bull 1998;34:211–9.Suche in Google Scholar

44. European Medicines Agency. Summary of product characteristics – Efexor. Available from: www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Efexor_30/WC500007863.pdf. Accessed on 26 May, 2013.Suche in Google Scholar

45. Troy SM, Lucki I, Peirgies AA, Parker VD, Klockowski PM, Chiang ST. Pharmacokinetic and pharmacodynamic evaluation of the potential drug interaction between venlafaxine and diazepam. J Clin Pharmacol 1995;35:410–9.10.1002/j.1552-4604.1995.tb04082.xSuche in Google Scholar

46. Kudo S, Ishizaki T. Pharmacokinetics of haloperidol. Clin Pharmacokinet 1999;37:435–56.10.2165/00003088-199937060-00001Suche in Google Scholar

47. Albers LJ, Reist C, Vu RL, Fujimoto K, Ozdemir V, Helmeste D, et al. Effect of venlafaxine on imipramine metabolism. Psychiatry Res 2000;96:235–43.10.1016/S0165-1781(00)00213-4Suche in Google Scholar

48. Levin GM, Nelson LA, DeVane CL, Preston SL, Eisele G, Carson SW. A pharmacokinetic drug-drug interaction study of venlafaxine and indinavir. Psychopharmacol Bull 2001;35:62–71.Suche in Google Scholar

49. Amchin J, Zarycranski W, Taylor KP, Albano D, Klockowski PM. Effect of venlafaxine on the pharmacokinetics of risperidone. J Clin Pharmacol 1999;39:297–309.10.1177/009127009903900314Suche in Google Scholar

50. Zhou S-F, Liu J-P, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009;41:89–295.10.1080/03602530902843483Suche in Google Scholar PubMed

51. Ali ZK, Kim RJ, Ysla FM. CYP2C9 polymorphisms: considerations in NSAID therapy. Curr Opin Drug Discov Dev 2009;12:108–14.Suche in Google Scholar

52. Taylor JJ, Wilson JW, Estes LL. Linezolid and serotonergic drug interactions: a retrospective survey. Clin Infect Dis 2006;43:180–7.10.1086/504809Suche in Google Scholar PubMed

53. Madeira M, Levine M, Chang TK, Mirfazaelian A, Bellward GD. The effect of cimetidine on dextromethorphan O-demethylase activity of human liver microsomes and recombinant CYP2D6. Drug Metab Dispos 2004;32:460–7.10.1124/dmd.32.4.460Suche in Google Scholar

54. Martínez C, Albet C, Agúndez JA, Herrero E, Carrillo JA, Márquez M, et al. Comparative in vitro and in vivo inhibition of cytochrome P450 CYP1A2, CYP2D6, and CYP3A by H2-receptor antagonists. Clin Pharmacol Ther 1999;65:369–76.10.1016/S0009-9236(99)70129-3Suche in Google Scholar

55. Obach RS, Walsky RR, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006;316:336–48.10.1124/jpet.105.093229Suche in Google Scholar PubMed

56. Ogu CC, Maxa JL. Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent) 2000;13:421–3.Suche in Google Scholar

57. Indiana University, School of Medicine, Division of Clinical Pharmacology. P450 drug interaction table. Available from: http://medicine.iupui.edu/clinpharm/ddis/table.aspx. Accessed on 25 April, 2013.Suche in Google Scholar

58. Shams ME, Arneth B, Hiemke C, Dragicevic A, Müller MJ, Kaiser R, et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006;31:493–502.10.1111/j.1365-2710.2006.00763.xSuche in Google Scholar PubMed

59. D’Empaire I, Guico-Pabia CJ, Preskorn SH. Antidepressant treatment and altered CYP2D6 activity: are pharmacokinetic variations clinically relevant? J Psychiatr Pract 2011;17:330–9.10.1097/01.pra.0000405363.95881.01Suche in Google Scholar PubMed

60. Wijnen PA, Limantoro I, Drent M, Bekers O, Kuijpers PM, Koek GH. Depressive effect of an antidepressant: therapeutic failure of venlafaxine in a case lacking CYP2D6 activity. Ann Clin Biochem 2009;46:527–30.10.1258/acb.2009.009003Suche in Google Scholar PubMed

61. Kingbäck M, Karlsson L, Zackrisson A-L, Carlsson B, Josefsson M, Bengtsson F, et al. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood. Forensic Sci Int 2012;214:124–34.10.1016/j.forsciint.2011.07.034Suche in Google Scholar PubMed

62. Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M, Hiemke C, et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004;60:329–36.10.1007/s00228-004-0766-8Suche in Google Scholar PubMed

63. Mitchell PB. Therapeutic drug monitoring of non-tricyclic antidepressant drugs. Clin Chem Lab Med 2004;42:1212–8.10.1515/CCLM.2004.243Suche in Google Scholar PubMed

64. Lobello KW, Preskorn SH, Guico-Pabia CJ, Jiang Q, Paul J, Nichols AI, et al. Cytochrome P450 2D6 phenotype predicts antidepressant efficacy of venlafaxine: a secondary analysis of 4 studies in major depressive disorder. J Clin Psychiatry 2010;71:1482–7.10.4088/JCP.08m04773bluSuche in Google Scholar PubMed

65. Mulder H, Wilmink FW, Beumer TL, Tamminga WJ, Jedema JN, Egberts AC. The association between cytochrome P450 2D6 genotype and prescription patterns of antipsychotic and antidepressant drugs in hospitalized psychiatric patients: a retrospective follow-up study. J Clin Psychopharmacol 2005;25:188–91.10.1097/01.jcp.0000155832.79777.b5Suche in Google Scholar PubMed

66. Vickers AE, Sinclair JR, Zollinger M, Heitz F, Glänzel U, Johanson L, et al. Multiple cytochrome P-450s involved in the metabolism of terbinafine suggest a limited potential for drug-drug interactions. Drug Metab Dispos 1999;27:1029–38.Suche in Google Scholar

67. Troy SM, Turner MB, Unruh M, Parker VD, Chiang ST. Pharmacokinetic and pharmacodynamic evaluation of the potential drug interaction between venlafaxine and ethanol. J Clin Pharmacol 1997;37:1073–81.10.1002/j.1552-4604.1997.tb04290.xSuche in Google Scholar PubMed

68. Molden E, Spigset O. Interactions between metoprolol and antidepressants. Tidsskr Nor Lægeforen 2011;131:1777–9.10.4045/tidsskr.11.0143Suche in Google Scholar PubMed

69. Augustin BG, Cold JA, Jann MW. Venlafaxine and nefazodone, two pharmacologically distinct antidepressants. Pharmacotherapy 1997;17:511–30.Suche in Google Scholar

70. Siccardi M, Marzolini C, Seden K, Almond L, Kirov A, Khoo S, et al. Prediction of drug-drug interactions between various antidepressants and efavirenz or boosted protease inhibitors using a physiologically based pharmacokinetic modelling approach. Clin Pharmacokinet 2013;52:583–92.10.1007/s40262-013-0056-7Suche in Google Scholar PubMed

71. Desmarais JE, Looper KJ. Managing menopausal symptoms and depression in tamoxifen users: implications of drug and medicinal interactions. Maturitas 2010;67:296–308.10.1016/j.maturitas.2010.08.005Suche in Google Scholar PubMed

72. Miguel C, Albuquerque E. Drug interaction in psycho-oncology: antidepressants and antineoplastics. Pharmacology 2011;88:333–9.10.1159/000334738Suche in Google Scholar PubMed

73. Fang J, Baker GB, Silverstone PH, Coutts RT. Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol Neurobiol 1997;17:227–33.10.1023/A:1026317929335Suche in Google Scholar

74. Pan L, Belpaire FM. In vitro study on the involvement of CYP1A2, CYP2D6 and CYP3A4 in the metabolism of haloperidol and reduced haloperidol. Eur J Clin Pharmacol 1999;55:599–604.10.1007/s002280050679Suche in Google Scholar PubMed

75. Jann MW, Spratlin V, Momary K, Zhang H, Turner D, Penzak SR, et al. Lack of a pharmacokinetic drug-drug interaction with venlafaxine extended-release/indinavir and desvenlafaxine extended-release/indinavir. Eur J Clin Pharmacol 2012;68:715–21.10.1007/s00228-011-1180-7Suche in Google Scholar PubMed

76. Jones SL, Athan E, O’Brien D. Serotonin syndrome due to co-administration of linezolid and venlafaxine. J Antimicrob Chemother 2004;54:289–90.10.1093/jac/dkh257Suche in Google Scholar PubMed

77. Bergeron L, Boulé M, Perreault S. Serotonin toxicity associated with concomitant use of linezolid. Ann Pharmacother 2005;39:956–61.10.1345/aph.1E523Suche in Google Scholar PubMed

78. Adan-Manes J, Novalbos J, López-Rodríguez R, Ayuso-Mateos JL, Abad-Santos F. Lithium and venlafaxine interaction: a case of serotonin syndrome. J Clin Pharm Ther 2006;31:397–400.10.1111/j.1365-2710.2006.00745.xSuche in Google Scholar PubMed

79. Shahani L. Venlafaxine augmentation with lithium leading to serotonin syndrome. J Neuropsychiatry Clin Neurosci 2012;24:E47.10.1176/appi.neuropsych.11080196Suche in Google Scholar PubMed

80. Decoutere L, De Winter S, Vander Weyden L, Spriet I, Schrooten M, Tournoy J, et al. A venlafaxine and mirtazapine-induced serotonin syndrome confirmed by de- and re-challenge. Int J Clin Pharm 2012;34:686–8.10.1007/s11096-012-9666-7Suche in Google Scholar PubMed

81. Houlihan DJ. Serotonin syndrome resulting from coadministration of tramadol, venlafaxine, and mirtazapine. Ann Pharmacother 2004;38:411–3.10.1345/aph.1D344Suche in Google Scholar PubMed

82. Prost N, Tichadou L, Rodor F, Nguyen N, David JM, Jean-Pastor MJ. St. Johns wort-venlafaxine interaction. Presse Med 2000;29:1285–6.Suche in Google Scholar

83. Albiñana Pérez MS, Cea Pereira L, Bilbao Salcedo J, Rodríguez Penín I. Possible serotonin syndrome associated with administration of venlafaxine and tramadol. Farm Hosp 2012;36:548.Suche in Google Scholar

84. Zonneveld AM, Hagenaars M, Voermans NC, Gelissen HP, Claassen JA. Life-threatening serotonin syndrome following a single dose of a serotonin reuptake inhibitor during maintenance therapy with a monoamine oxidase inhibitor. Ned Tijdschr Geneeskd 2006;150:1081–4.Suche in Google Scholar

85. Brubacher JR, Hoffman RS, Lurin MJ. Serotonin syndrome from venlafaxine-tranylcypromine interaction. Vet Hum Toxicol 1996;38:358–61.Suche in Google Scholar

86. Hodgman MJ, Martin TG, Krenzelok EP. Serotonin syndrome due to venlafaxine and maintenance tranylcypromine therapy. Hum Exp Toxicol 1997;16:14–7.10.1177/0960327197016001031Suche in Google Scholar PubMed

87. McCue RE, Joseph M. Venlafaxine- and trazodone-induced serotonin syndrome. Am J Psychiatry 2001;158:2088–9.10.1176/appi.ajp.158.12.2088Suche in Google Scholar PubMed

88. De Abajo FJ, García-Rodríguez LA, With I, Drugs NA. Risk of upper gastrointestinal tract bleeding associated with selective serotonin reuptake inhibitors and venlafaxine therapy: interaction with nonsteroidal anti-inflammatory drugs and effect of acid-suppressing agents. Arch Gen Psychiatry 2008;65: 795–803.10.1001/archpsyc.65.7.795Suche in Google Scholar PubMed

89. Teichert M, Visser LE, Uitterlinden AG, Hofman A, Buhre PJ, Straus S, et al. Selective serotonin re-uptake inhibiting antidepressants and the risk of overanticoagulation during acenocoumarol maintenance treatment. Br J Clin Pharmacol 2011;72:798–805.10.1111/j.1365-2125.2011.04004.xSuche in Google Scholar PubMed PubMed Central

90. Teles J, Fukuda E, Feder D. Warfarin: pharmacological profile and drug interactions with antidepressants. Einstein 2012;10:110–5.10.1590/S1679-45082012000100024Suche in Google Scholar PubMed

91. Ghio L, Puppo S, Presta A. Venlafaxine and risk of upper gastrointestinal bleeding in elderly depression. Curr Drug Saf 2012;7:389–90.10.2174/157488612805076589Suche in Google Scholar

92. Dalton SO, Sørensen HT, Johansen C. SSRIs and upper gastrointestinal bleeding: what is known and how should it influence prescribing? CNS Drugs 2006;20:143–51.10.2165/00023210-200620020-00005Suche in Google Scholar

93. Opatrny L, Delaney JA, Suissa S. Gastro-intestinal haemorrhage risks of selective serotonin receptor antagonist therapy: a new look. Br J Clin Pharmacol 2008;66:76–81.10.1111/j.1365-2125.2008.03154.xSuche in Google Scholar

94. Hallbäck I, Hägg S, Eriksson AC, Whiss PA. In vitro effects of serotonin and noradrenaline reuptake inhibitors on human platelet adhesion and coagulation. Pharmacol Rep 2012;64:979–83.10.1016/S1734-1140(12)70894-0Suche in Google Scholar

95. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther 1997;73:67–74.10.1016/S0163-7258(96)00140-4Suche in Google Scholar

96. Thijssen HH, Flinois JP, Beaune PH. Cytochrome P450 2C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000;28:1284–90.Suche in Google Scholar

Received: 2014-2-24
Accepted: 2014-5-1
Published Online: 2014-6-18
Published in Print: 2015-3-1

©2015 by De Gruyter

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dmdi-2014-0011/html
Button zum nach oben scrollen