Abstract
This review focuses on the genetic polymorphisms of the cytochrome P450 (CYP) genes in Mexican indigenous populations, who are a part of the wide ethnic diversity of this country. These native groups have a particular historical trajectory that is different from the Mexican Mestizos. This variability may be reflected in the frequency distribution of polymorphisms in the CYP genes that encode enzymes involved in the metabolism of drugs and other xenobiotics. Therefore, these polymorphisms may affect drug efficacy and safety in indigenous populations in Mexico. The present study aimed to analyze the prevalence of CYP polymorphisms in indigenous Mexicans and to compare the results with studies in Mexican Mestizos. Because the extrapolation of pharmacogenetic data from Mestizos is not applicable to the majority of indigenous groups, pharmacogenetic studies directed at indigenous populations need to be developed. The Amerindians analyzed in this study showed a low phenotypic (CYP2D6) and genotypic (CYP2D6, CYP2C9) diversity, unlike Mexican Mestizos. The frequency of polymorphisms in the CYP1A1, CYP2C19, CYP2E1, and CYP3A4 genes was more similar among the Amerindians and Mexican Mestizos, with the exception of the CYP1A2 gene, whose *1F variant frequency in Mexican Amerindians was the highest described to date.
This study was supported by CONACYT-Mexico Project 2011-C01-162368. Martha Sosa-Macías is supported by a grant (COFAA) from the Instituto Politécnico Nacional. The study was coordinated in the RIBEF-SIFF network (Red Iberoamericana de Farmacogenética y Farmacogenómica; www.ribef.com) Consortium CEIBA for the Study of Pharmacogenetics of Iberoamerican Populations (AEXCID 11/02).
Conflict of interest statement
Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article. Research funding played no role in thestudy design; in the collection, analysis, and interpretationof data; in the writing of the report; or in the decision tosubmit the report for publication.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
References
1. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999;56: 345–7.10.1034/j.1399-0004.1999.560401.xSearch in Google Scholar PubMed
2. Pirmohamed M. Pharmacogenetics and pharmacogenomics. Br J Clin Pharmacol 2001;52:345–7.10.1046/j.0306-5251.2001.01498.xSearch in Google Scholar PubMed PubMed Central
3. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138: 103–41.10.1016/j.pharmthera.2012.12.007Search in Google Scholar PubMed
4. Rubi-Castellanos R, Martínez-Cortés G, Muñoz-Valle JF, González-Martín A, Cerda-Flores RM, Anaya-Palafox M, et al. Genetic data of 15 autosomal STRs (Identifiler kit) of three Mexican Mestizo population samples from the States of Jalisco (West), Puebla (Center), and Yucatan (Southeast). Forensic Sci Int Genet 2009;3:e71–6.10.1016/j.fsigen.2008.07.006Search in Google Scholar PubMed
5. INALI. 2008. Instituto Nacional de Lenguas Indígenas. Mexico. Available at: INALI. http://www.inali.gob.mx. Accessed June 2013.Search in Google Scholar
6. INEGI. 2010. Instituto Nacional de Estadística Geografía e Informática. Mexico. Available at: http://www.inegi.gob.mx. Accessed June 2013.Search in Google Scholar
7. Martínez-Cortes G, Nuño-Arana I, Rubi-Castellanos R, Vilchis-Dorantes G, Luna-Vázquez A, Coral-Vázquez RM, et al. Origin and genetic differentiation of three Native Mexican groups (Purépechas, Triquis and Mayas): contribution of CODIS-STRs to the history of human populations of Mesoamerica. Ann Hum Biol 2010;37:801–19.10.3109/03014461003743801Search in Google Scholar PubMed
8. Rangel-Villabobos H. La historia del hombre descrita por el cromosoma Y. In: González-Martín A, editor. Historia Biológica del Hombre en América. Hidalgo, México: Universidad Autónoma del Estado de Hidalgo, 2006:29–76.Search in Google Scholar
9. Sandoval K, Buentello-Malo L, Peñaloza-Espinosa R, Avelino H, Salas A, Calafell F, et al. Linguistic and maternal genetic diversity are not correlated in Native Mexicans. Hum Genet 2009;126:521–31.10.1007/s00439-009-0693-ySearch in Google Scholar PubMed PubMed Central
10. Cordell LS, Fowler DD. Southwest archaeology in the twentieth century. Salt Lake City, UT: University of Utah Press, 2005.Search in Google Scholar
11. Schurr TG, Sherry ST. Mitochondrial DNA and Y chromosome diversity and the peopling of the Americas: evolutionary and demographic evidence. Am J Hum Biol 2004;16:420–39.10.1002/ajhb.20041Search in Google Scholar PubMed
12. Salzano FM. Molecular variability in Amerindians: widespread but uneven information. An Acad Bras Cienc 2002;74:223–63.10.1590/S0001-37652002000200005Search in Google Scholar
13. Rangel-Villalobos H, Muñoz-Valle JF, González-Martín A, Gorostiza A, Magaña MT, Páez-Riberos LA. Genetic admixture, relatedness, and structure patterns among Mexican populations revealed by the Y-chromosome. Am J Phys Anthropol 2008;135:448–61.10.1002/ajpa.20765Search in Google Scholar PubMed
14. Achilli A, Perego UA, Bravi CM, Coble MD, Kong QP, Woodward SR, et al. The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies. PLoS ONE 2008;3:e1764.10.1371/journal.pone.0001764Search in Google Scholar PubMed PubMed Central
15. Vargas-Alarcón G, Hernández-Pacheco G, Moscoso J, Perez-Hernández N, Murguía LE, Moreno A, et al. HLA genes in Mexican Teeneks: HLA genetic relationship with other worldwide populations. Mol Immunol 2006;43:790–99.10.1016/j.molimm.2005.07.017Search in Google Scholar PubMed
16. Silva WA, Bonatto SL, Holanda AJ, Ribeiro-dos-Santos AK, Paixao BM, Goldman GH, et al. Mitochondrial genome diversity of native Americans supports a single early entry of founder populations into America. Am J Hum Genet 2002;71:187–92.10.1086/341358Search in Google Scholar PubMed PubMed Central
17. Herrera RJ, Rojas DP, Terreros MC. Polymorphic Alu insertions among Mayan populations. J Hum Genet 2007;52:129–42.10.1007/s10038-006-0089-ySearch in Google Scholar PubMed
18. Ibarra-Rivera L, Mirabal S, Regueiro MM, Herrera RJ. Delineating genetic relationships among the Maya. Am J Phys Anthropol 2008;135:329–47.10.1002/ajpa.20746Search in Google Scholar PubMed
19. González-Martín A, Gorostiza A, Rangel-Villalobos H, Acunha V, Barrot C, Sánchez C, et al. Analyzing the genetic structure of the Tepehua in relation to other neighboring Mesoamerican populations: a study based on allele frequencies of STRs markers. Am J Hum Biol 2008;20:605–13.10.1002/ajhb.20787Search in Google Scholar PubMed
20. Quinto-Cortés CD, Arriola LA, García-Hughes G, García-López R, Molina DP, Flores M, et al. Genetic characterization of indigenous peoples from Oaxaca, Mexico, and its relation to linguistic and geographic isolation. Hum Biol 2010;82:409–32.10.3378/027.082.0405Search in Google Scholar PubMed
21. Rangel-Villalobos H, Martínez-Sevilla VM, Salazar-Flores J, Martínez-Cortez G, Muñoz-Valle JF, Galaviz-Hernández C, et al. Forensic parameters for 15 STRs in eight Amerindian populations from the north and west of Mexico. Forensic Sci Int Genet 2013;7:e62–5.10.1016/j.fsigen.2013.02.003Search in Google Scholar PubMed
22. SSA. Secretaría de Salud. La Población Indígena y su incorporación al Sistema de Protección Social en Salud. Primera Edición, 2005. México. Available at: http://www.salud.gob.mx/unidades/cdi/documentos/DOCSAL7579.doc. Accessed May 2013.Search in Google Scholar
23. Acton KJ, Burrows NR, Moore K, Querec L, Geiss LS, Engelgau MM. Trends in diabetes prevalence among American Indian and Alaska native children, adolescents, and young adults. Am J Public Health 2002;92:1485–90.10.2105/AJPH.92.9.1485Search in Google Scholar PubMed PubMed Central
24. Retnakaran R, Hanley AJ, Connelly PW, Harris SB, Zinman B. Cigarette smoking and cardiovascular risk factors among aboriginal Canadian youths. Can Med Assoc J 2005;173: 885–9.10.1503/cmaj.045159Search in Google Scholar PubMed PubMed Central
25. Guerrero-Romero F, Rodríguez-Morán M, Sandoval-Herrera F. Low prevalence of non-insulin dependent diabetes mellitus in indigenous communities. Arch Med Res 1997;28:137–40.Search in Google Scholar
26. King H, Rewers M, WHO Ad Hoc Diabetes Reporting Group. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 1993;16:157–77.10.2337/diacare.16.1.157Search in Google Scholar PubMed
27. Rodríguez-Morán M, Guerrero-Romero F, Rascón-Pacheco RA, Multidisciplinary Research Group on Diabetes of the Instituto Mexicano del Seguro Social. Dietary factors related to the increase of cardiovascular risk factors in traditional Tepehuanos communities from Mexico: a 10 year follow-up study. Nutr Metab Cardiovasc Dis 2009;19:409–16.10.1016/j.numecd.2008.08.005Search in Google Scholar
28. Bonvallot V, Baeza-Squiban A, Baulig A, Brulant S, Boland S, Muzeau F, et al. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol 2001;25:515–21.10.1165/ajrcmb.25.4.4515Search in Google Scholar
29. Nan HM, Kim H, Lim HS, Choi JK, Kawamoto T, Kang JW, et al. Effects of occupation, lifestyle and genetic polymorphisms of CYP1A1, CYP2E1, GSTM1 and GSTT1 on urinary 1-hydroxypyrene and 2-naphthol concentrations. Carcinogenesis 2001;22: 787–93.10.1093/carcin/22.5.787Search in Google Scholar
30. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004;279:23847–50.10.1074/jbc.R400004200Search in Google Scholar
31. Garte S, Boffetta P, Caporaso N, Vineis P. Metabolic gene allele nomenclature. Cancer Epidemiol Biomarkers Prev 2001;10:1305–6.Search in Google Scholar
32. Zhang ZY, Fasco MJ, Huang L, Guengerich FP, Kaminsky LS. Characterization of purified human recombinant cytochrome P4501A1-Ile462 and -Val462: assessment of a role for the rare allele in carcinogenesis. Cancer Res 1996;56: 3926–33.Search in Google Scholar
33. Wang XL, Greco M, Sim AS, Duarte N, Wang J, Wilcken DE. Effect of CYP1A1 Msp I polymorphism on cigarette smoking related coronary artery disease and diabetes. Atherosclerosis 2002;162:391–7.10.1016/S0021-9150(01)00723-7Search in Google Scholar
34. Kawajiri K, Nakachi K, Imai K, Yoshii A, Shinoda N, Watanabe J. Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P4501A1 gene. FEBS Lett 1990;263:131–3.10.1016/0014-5793(90)80721-TSearch in Google Scholar
35. Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Available at: http://www.cypalleles.ki.se. Accessed May 2013.Search in Google Scholar
36. Fragoso JM, Juárez-Cedillo T, Hernández-Pacheco G, Ramírez E, Zuñiga J, Izaguirre R, et al. Cytochrome P4501A1 polymorphisms in the Amerindian and Mestizo populations of Mexico. Cell Biochem Funct 2005;23:189–93.10.1002/cbf.1174Search in Google Scholar PubMed
37. Gallegos-Arreola MP, Batista-González CM, Delgado-Lamas JL, Figuera LE, Puebla-Pérez AM, Arnaud-López L, et al. Cytochrome P4501A1 polymorphism is associated with susceptibility to acute lymphoblastic leukemia in adult Mexican patients. Blood Cells Mol Dis 2004;33:326–9.10.1016/j.bcmd.2004.07.002Search in Google Scholar PubMed
38. Montero R, Araujo A, Carranza P, Mejía-Loza V, Serrano L, Albores A, et al. Genotype frequencies of polymorphic GSTM1, GSTT1, and cytochrome P450 CYP1A1 in Mexicans. Hum Biol 2007;79:299–312.10.1353/hub.2007.0037Search in Google Scholar PubMed
39. Pérez-Morales R, Castro-Hernández C, Gonsebatt ME, Rubio J. Polymorphism of CYP1A1*2C, GSTM1*0, and GSTT1*0 in a Mexican Mestizo population: a similitude analysis. Hum Biol 2008;80:457–65.10.3378/1534-6617-80.4.457Search in Google Scholar PubMed
40. Rudkowska I, Dewailly E, Hegele RA, Boiteau V, Dubé-Linteau A, Abdous B, et al. Gene-diet interactions on plasma lipid levels in the Inuit population. Br J Nutr 2013;109:953–61.10.1017/S0007114512002231Search in Google Scholar PubMed
41. Gaspar PA, Hutz MH, Salzano FM, Hill K, Hurtado AM, Petzl-Erler ML, et al. Polymorphisms of CYP1a1, CYP2e1, GSTM1, GSTT1, and TP53 genes in Amerindians. Am J Phys Anthropol 2002;119:249–56.10.1002/ajpa.10128Search in Google Scholar PubMed
42. Muñoz S, Vollrath V, Vallejos MP, Miquel JF, Covarrubias C, Raddatz A, et al. Genetic polymorphisms of CYP2D6, CYP1A1, and CYP2E1 in the South-Amerindian population of Chile. Pharmacogenetics 1998;8:343–51.10.1097/00008571-199808000-00008Search in Google Scholar PubMed
43. Kvitko K, Nuñes JC, Weimer TA, Salzano FM, Hutz MH. Cytochrome P4501A1 polymorphisms in South American Indians. Hum Biol 2000;72:1039–43.Search in Google Scholar
44. Volodko NV, Starikovskaya EB, Mazunin IO, Eltsov NP, Naidenko PV, Wallace DC, et aI. Mitochondrial genome diversity in arctic Siberians, with particular reference to the evolutionary history of Beringia and Pleistocenic peopling of the Americas. Am J Hum Genet 2008;82:1084–100.10.1016/j.ajhg.2008.03.019Search in Google Scholar PubMed PubMed Central
45. Duzhak T, Mitrofanov D, Ostashevskii V, Gutkina N, Chasovnikova O, Posukh O, et al. Genetic polymorphisms of CYP2D6, CYP1A1, GSTM1 and p53 genes in a unique Siberian population of Tundra Nentsi. Pharmacogenetics 2000;10: 531–7.10.1097/00008571-200008000-00006Search in Google Scholar PubMed
46. Gallegos-Arreola MP, González-García JR, Figuera LE, Puebla-Pérez AM, Delgado-Lamas JL, Zúñiga-González GM. Distribution of CYP1A1*2A polymorphism in adult patients with acute lymphoblastic leukemia in a Mexican population. Blood Cells Mol Dis 2008;41:91–4.10.1016/j.bcmd.2007.12.001Search in Google Scholar PubMed
47. Juárez-Cedillo T, Vallejo M, Fragoso JM, Hernández-Hernández DM, Rodríguez-Pérez JM, Sánchez-García S, et al. The risk of developing cervical cancer in Mexican women is associated to CYP1A1 MspI polymorphism. Eur J Cancer 2007;43:1590–5.10.1016/j.ejca.2007.03.025Search in Google Scholar PubMed
48. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007;116:496–526.10.1016/j.pharmthera.2007.09.004Search in Google Scholar PubMed
49. Rettie AE, Jones JP. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu Rev Pharmacol Toxicol 2005;45:477–94.10.1146/annurev.pharmtox.45.120403.095821Search in Google Scholar PubMed
50. Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2010;278:165–88.10.1016/j.tox.2009.08.013Search in Google Scholar PubMed
51. Becquemont L, Alfirevic A, Amstutz U, Brauch H, Jacqz-Aigrain E, Laurent-Puig P, et al. Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics. Pharmacogenomics 2011;12:113–24.10.2217/pgs.10.147Search in Google Scholar PubMed
52. Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug metabolizing enzymes: implications for a safer and more effective drug therapy. Philos Trans R Soc Lond B Biol Sci 2005;360:1563–70.10.1098/rstb.2005.1685Search in Google Scholar PubMed PubMed Central
53. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001;11:803–8.10.1097/00008571-200112000-00008Search in Google Scholar PubMed
54. Cavallari LH, Momary KM, Patel SR, Shapiro NL, Nutescu E, Viana MA. Pharmacogenomics of warfarin dose requirements in Hispanics. Blood Cells Mol Dis 2011;46:147–50.10.1016/j.bcmd.2010.11.005Search in Google Scholar PubMed
55. Dorado P, Sosa M, Peñas-Lledó EM, Alanis-Bañuelos RE, Wong M-L, Licinio J, et al. CYP2C9 allele frequency differences between populations of Mexican-Mestizo, Mexican-Tepehuano, and Spaniards. Pharmacogenomics J 2011;11:108–12.10.1038/tpj.2010.29Search in Google Scholar PubMed
56. Sosa-Macías M, Lazalde-Ramos BP, Galaviz-Hernández C, Rangel-Villalobos H, Salazar-Flores J, Martínez-Sevilla VM, et al. Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations from Northwest Mexico. Pharmacogenomics J 2013. Epub ahead of print.10.1038/tpj.2012.52Search in Google Scholar PubMed
57. Castelán-Martínez OD, Hoyo-Vadillo C, Sandoval-García E, Sandoval-Ramírez L, González-Ibarra M, Solano-Solano G, et al. Allele frequency distribution of CYP2C9*2 and CYP2C9*3 polymorphisms in six Mexican populations. Gene 2013;523:167–72.10.1016/j.gene.2013.03.128Search in Google Scholar PubMed
58. Llerena A, Dorado P, Kirwan FO’, Jepson R, Licinio J, Wong M-L. Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharmacogenomics J 2004;4:403–6.10.1038/sj.tpj.6500278Search in Google Scholar PubMed
59. Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 2001;79:841–7.10.1139/y01-065Search in Google Scholar
60. Vargens DD, Petzl-Erler ML, Suarez-Kurtz G. Distribution of CYP2C polymorphisms in an Amerindian population of Brazil. Basic Clin Pharmacol Toxicol 2012;110:396–400.10.1111/j.1742-7843.2011.00807.xSearch in Google Scholar PubMed
61. Yang ZF, Cui HW, Hasi T, Jia SQ, Gong ML, Su XL. Genetic polymorphisms of cytochrome P450 enzymes 2C9 and 2C19 in a healthy Mongolian population in China. Genet Mol Res 2010;9:1844–51.10.4238/vol9-3gmr938Search in Google Scholar
62. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996;6:341–9.10.1097/00008571-199608000-00007Search in Google Scholar
63. Nasu K, Kubota T, Ishizaki T. Genetic analysis of CYP2C9 polymorphisms in a Japanese population. Pharmacogenetics 1997;7:405–9.10.1097/00008571-199710000-00011Search in Google Scholar
64. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 1998;20:243–7.10.1097/00007691-199806000-00001Search in Google Scholar
65. Bravo-Villalta HV, Yamamoto K, Nakamura K, Baya A, Okada Y, Horiuchi R. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study. Eur J Clin Pharmacol 2005;61:179–84.10.1007/s00228-004-0890-5Search in Google Scholar
66. Kirchheiner J, Seeringer A. Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochem Biophys Acta 2007;1770:489–94.10.1016/j.bbagen.2006.09.019Search in Google Scholar
67. Obach RS, Zhang QY, Dunbar D, Kaminsky LS. Metabolic characterization of the major human small intestinal cytochrome p450s. Drug Metab Dispos 2001;29:347–52.Search in Google Scholar
68. Brøsen K. Some aspects of genetic polymorphism in the biotransformation of antidepressants. Therapie 2004; 59:5–12.10.2515/therapie:2004003Search in Google Scholar
69. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006;108:2244–7.10.1182/blood-2006-04-013052Search in Google Scholar
70. Li XQ, Andersson TB, Ahlström M, Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos 2004;32:821–7.10.1124/dmd.32.8.821Search in Google Scholar
71. De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994;269:15419–22.10.1016/S0021-9258(17)40694-6Search in Google Scholar
72. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994;46:594–8.Search in Google Scholar
73. Hunfeld NG, Touw DJ, Mathot RA, van Schaik RH, Kuipers EJ. A comparison of the acid-inhibitory effects of esomeprazole and rabeprazole in relation to pharmacokinetics and CYP2C19 polymorphism. Aliment Pharmacol Ther 2012;35:810–8.10.1111/j.1365-2036.2012.05014.xSearch in Google Scholar
74. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, et al. A common novel CYP2C19 genBae variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006;79:103–13.10.1016/j.clpt.2005.10.002Search in Google Scholar
75. Nowak MP, Sellers EM, Tyndale RF. Canadian Native Indians exhibit unique CYP2A6 and CYP2C19 mutant allele frequencies. Clin Pharmacol Ther 1998;64:378–83.10.1016/S0009-9236(98)90068-6Search in Google Scholar
76. Jurima-Romet M, Goldstein JA, LeBelle M, Aubin RA, Foster BC, Walop W, et al. CYP2C19 genotyping and associated mephenytoin hydroxylation polymorphism in a Canadian Inuit population. Pharmacogenetics 1996;6:329–39.10.1097/00008571-199608000-00006Search in Google Scholar PubMed
77. Goldstein JA, Ishizaki T, Chiba K, de Morais SM, Bell D, Krahn PM, et al. Frequencies of the defective CYP2Cl9 alleles responsible for the mephanytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 1997;7:59–64.10.1097/00008571-199702000-00008Search in Google Scholar PubMed
78. Takakubo F, Kuwano A, Kondo I. Evidence that poor metabolizers of (S)-mephenytoin could be identified by haplotypes of CYP2C19 in Japanese. Pharmacogenetics 1996;6:265–7.10.1097/00008571-199606000-00011Search in Google Scholar PubMed
79. Santos PC, Soares RA, Santos DB, Nascimento RM, Coelho GL, Nicolau JC, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet 2011;12:13.10.1186/1471-2350-12-13Search in Google Scholar PubMed PubMed Central
80. Salazar-Flores J, Torres-Reyes LA, Martínez-Cortés G, Rubi-Castellanos R, Sosa-Macías M, Muñoz-Valle JF, et al. Distribution of CYP2D6 and CYP2C19 polymorphisms associated with poor metabolizer phenotype in five Amerindian groups and western Mestizos from Mexico. Genet Test Mol Biomarkers 2012;16:1098–104.10.1089/gtmb.2012.0055Search in Google Scholar PubMed PubMed Central
81. Hoyo-Vadillo C, Garcia-Mena J, Valladares A, Venturelli CR, Wacher-Rodarte N, Kumate J, et al. Association of CYP2C19 genotype with type 2 diabetes. Health 2010;2:1184–90.10.4236/health.2010.210174Search in Google Scholar
82. Luo HR, Poland RE, Lin KM, Wan YJ. Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin Pharmacol Ther 2006;80:33–40.10.1016/j.clpt.2006.03.003Search in Google Scholar PubMed
83. Kurose K, Sugiyama E, Saito Y. Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 2012;27:9–54.10.2133/dmpk.DMPK-11-RV-111Search in Google Scholar
84. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 2006;58:521–90.10.1124/pr.58.3.6Search in Google Scholar
85. Gaedigk A, Ryder DL, Bradford LD, Leeder JS. CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay for the -1584G promoter polymorphism. Clin Chem 2003;49:1008–11.10.1373/49.6.1008Search in Google Scholar
86. Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos 2008;36:2460–7.10.1124/dmd.108.023242Search in Google Scholar
87. Gaedigk A, Blum M, Gaedigk R, Eichelbaum M, Meyer UA. Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 1991;48:943–50.Search in Google Scholar
88. Griese EU, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Mörike K, et al. Assessment of the predictive power of genotypes for the in-vivo catalytic function of CYP2D6 in a German population. Pharmacogenetics 1998;8:15–26.10.1097/00008571-199802000-00003Search in Google Scholar
89. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005;5:6–13.10.1038/sj.tpj.6500285Search in Google Scholar
90. Llerena A, Edman G, Cobaleda J, Benítez J, Schalling D, Bertilsson L. Relationship between personality and debrisoquine hydroxylation capacity: suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 1993;87:23–8.10.1111/j.1600-0447.1993.tb03325.xSearch in Google Scholar
91. Bertilsson L, Lou YQ, Du YL, Liu Y, Kuang TY, Liao XM, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mephenytoin. Clin Pharmacol Ther 1992;51:388–97.10.1038/clpt.1992.38Search in Google Scholar
92. Tateishi T, Chida M, Ariyoshi N, Mizorogi Y, Kamataki T, Kobayashi S. Analysis of the CYP2D6 gene in relation to dextromethorphan O-demethylation capacity in a Japanese population. Clin Pharmacol Ther 1999;65:570–5.10.1016/S0009-9236(99)70077-9Search in Google Scholar
93. Sosa-Macías M, Elizondo G, Flores-Pérez C, Flores-Pérez J, Bradley-Alvarez F, Alanis-Bañuelos RE, et al. CYP2D6 genotype and phenotype in Amerindians of Tepehuano origin and Mestizos of Durango, Mexico. J Clin Pharmacol 2006;46: 527–36.10.1177/0091270006287586Search in Google Scholar PubMed
94. Sosa-Macías M, Dorado P, Alanis-Bañuelos RE, Llerena A, Lares-Asseff I. Influence of CYP2D6 deletion, multiplication, – 1584C→G, 31G→A and 2988G→a gene polymorphisms on dextromethorphan metabolism among Mexican tepehuanos and mestizos. Pharmacology 2010;86:30–6.10.1159/000314334Search in Google Scholar PubMed
95. Lopez M, Guerrero J, Jung-Cook H, Alonso ME. CYP2D6 genotype and phenotype determination in a Mexican Mestizo population. Eur J Clin Pharmacol 2005;61:749–54.10.1007/s00228-005-0038-2Search in Google Scholar PubMed
96. Arias TD, Jorge LF, Lee D, Barrantes R, Inaba T. The oxidative metabolism of sparteine in the Cuna Amerindians of Panama: absence of evidence for deficient metabolizers. Clin Pharmacol Ther 1988;43:456–65.10.1038/clpt.1988.58Search in Google Scholar PubMed
97. Jorge LF, Arias TD, Inaba T, Jackson PR. Unimodal distribution of the metabolic ratio for debrisoquine in Cuna Amerindians of Panama. Br J Clin Pharmacol 1990;30:281–5.10.1111/j.1365-2125.1990.tb03776.xSearch in Google Scholar PubMed PubMed Central
98. Jorge LF, Eichelbaum M, Griese EU, Inaba T, Arias TD. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 1999;9:217–28.Search in Google Scholar
99. Bailliet G, Santos MR, Alfaro EL, Dipierri JE, Demarchi DA, Carnese FR, et al. Allele and genotype frequencies of metabolic genes in Native Americans from Argentina and Paraguay. Mutat Res 2007;627:171–7.10.1016/j.mrgentox.2006.11.005Search in Google Scholar PubMed
100. Griman P, Moran Y, Valero G, Loreto M, Borjas L, Chiurillo MA. CYP2D6 gene variants in urban/admixed and Amerindian populations of Venezuela: pharmacogenetics and anthropological implications. Ann Hum Biol 2012;39:137–42.10.3109/03014460.2012.656703Search in Google Scholar PubMed
101. Jurima-Romet M, Foster BC, Casley WL, Rode A, Vloshinsky P, Huang HS, et al. CYP2D6-related oxidation polymorphism in a Canadian Inuit population. Can J Physiol Pharmacol 1997;75:165–72.10.1139/y97-013Search in Google Scholar
102. Nowak MP, Tyndale RF, Sellers EM. CYP2D6 phenotype and genotype in a Canadian Native Indian population. Pharmacogenetics 1997;7:145–8.10.1097/00008571-199704000-00008Search in Google Scholar PubMed
103. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009;19:170–9.10.1097/FPC.0b013e32831ebb30Search in Google Scholar PubMed
104. Kessova I, Cederbaum AI. CYP2E1. Biochemistry, toxicology, regulation and function in ethanol-induced liver injury. Curr Mol Med 2003;3:509–18.10.2174/1566524033479609Search in Google Scholar PubMed
105. Lai C, Shields PG. The role of interindividual variation in human carcinogenesis. J Nutr 1999;129:S552–5.10.1093/jn/129.2.552SSearch in Google Scholar PubMed
106. Wang AH, Zhu SM, Qiu YL, Zhu R, Qu YB, Li YL, et al. CYP2E1 mRNA expression, genetic polymorphisms in peripheral blood lymphocytes and liver abnormalities in Chinese VCM-exposed workers. Int J Occup Med Environ Health 2008;21:141–6.10.2478/v10001-008-0016-xSearch in Google Scholar PubMed
107. Hayashi S, Watanabe J, Kawajiri K. Genetic polymorphisms in the 5′-flanking region change transcriptional regulation of the human cytochrome P450IIE1 gene. J Biochem 1991;110:559–65.10.1093/oxfordjournals.jbchem.a123619Search in Google Scholar PubMed
108. Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2004;36:511–29.10.1081/DMR-200033441Search in Google Scholar
109. Ueno Y, Adachi J, Imamichi H, Nishimura A, Tatsuno Y. Effect of the cytochrome P-450IIE1 genotype on ethanol elimination rate in alcoholics and control subjects. Alcohol Clin Exp Res 1996;20:17a–21a.10.1111/j.1530-0277.1996.tb01720.xSearch in Google Scholar PubMed
110. Konishi T, Luo HR, Calvillo M, Mayo MS, Lin KM, Wan YJ. ADH1B*1, ADH1C*2, DRD2 (-141C Ins), and 5-HTTLPR are associated with alcoholism in Mexican American men living in Los Angeles. Alcohol Clin Exp Res 2004;28:1145–52.10.1097/01.ALC.0000134231.48395.42Search in Google Scholar PubMed
111. Iwahashi K, Ameno S, Ameno K, Okada N, Kinoshita H, Sakae Y, et al. Relationship between alcoholism and CYP2E1 C/D polymorphism. Neuropsychobiology 1998;38:218–21.10.1159/000026544Search in Google Scholar PubMed
112. Konishi T, Smith JL, Lin KM, Wan YJ. Influence of genetic admixture on polymorphisms of alcohol-metabolizing enzymes: analyses of mutations on the CYP2E1, ADH2, ADH3 and ALDH2 genes in a Mexican-American population living in the Los Angeles area. Alcohol Alcohol 2003;38:93–4.10.1093/alcalc/agg021Search in Google Scholar PubMed
113. McBride OW, Umeno M, Gelboin HV, Gonzalez FJ. A Taq I polymorphism in the human P450IIE1 gene on chromosome 10 (CYP2E). Nucleic Acids Res 1987;15:10071.10.1093/nar/15.23.10071Search in Google Scholar PubMed PubMed Central
114. Wong NA, Rae F, Simpson KJ, Murray GD, Harrison DJ. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis. Mol Pathol 2000;53:88–93.10.1136/mp.53.2.88Search in Google Scholar PubMed PubMed Central
115. Montano Loza AJ, Ramirez Iglesias MT, Perez Diaz I, Cruz Castellanos S, Garcia Andrade C, Medina Mora ME, et al. Association of alcohol-metabolizing genes with alcoholism in a Mexican Indian (Otomi) population. Alcohol 2006;39:73–9.10.1016/j.alcohol.2006.07.001Search in Google Scholar
116. Gordillo-Bastidas E, Panduro A, Gordillo-Bastidas D, Zepeda-Carrillo EA, García-Bañuelos JJ, Muñoz-Valle JF, et al. Polymorphisms of alcohol metabolizing enzymes in indigenous Mexican population: unusual high frequency of CYP2E1*c2 allele. Alcohol Clin Exp Res 2010;34:142–9.10.1111/j.1530-0277.2009.01075.xSearch in Google Scholar
117. Mendoza-Cantú A, Castorena-Torres F, Bermudez M, Martínez-Hernández R, Ortega A, Salinas JE, et al. Genotype and allele frequencies of polymorphic cytochromes P450 CYP1A2 and CYP2E1 in Mexicans. Cell Biochem Funct 2004;22:29–34.10.1002/cbf.1049Search in Google Scholar
118. Lucas D, Gill K, Ménez JF, Deitrich RA. Differences in cytochromes P450 2E1 and 1A1 between American Indians and Caucasians. Alcohol Clin Exp Res 1995;19:74a.Search in Google Scholar
119. Tan W, Song N, Wang GQ, Liu Q, Tang HJ, Kadlubar FF, et al. Impact of genetic polymorphism in cytochrome P450 2E1 and glutathione S-transferases M1, T1, and P1 on susceptibility to esophageal cancer among high risk individuals in China. Cancer Epidemiol Biomarkers Prev 2000;9:551–6.Search in Google Scholar
120. Hamajima N, Takezaki T, Tajima K. Allele frequencies of 25 polymorphisms pertaining to cancer risk for Japanese, Koreans and Chinese. Asian Pac J Cancer Prev 2002;3:197–206.Search in Google Scholar
121. Wan YJ, Poland RE, Lin KM. Genetic polymorphism of CYP2E1, ADH2 and ALDH2 in Mexican-Americans. Genet Test 1998;2:79–83.10.1089/gte.1998.2.79Search in Google Scholar
122. Quiñones L, Lucas D, Godoy J, Cáceres D, Berthou F, Varela N, et al. CYP1A1, CYP2E1 and GSTM1 genetic polymorphisms: the effect of single and combined genotypes on lung cancer susceptibility in Chilean people. Cancer Lett 2001;174:35–44.10.1016/S0304-3835(01)00686-3Search in Google Scholar
123. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 2007;39:699–721.10.1080/03602530701690374Search in Google Scholar PubMed
124. Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 2005;1687:84–93.10.1016/j.bbalip.2004.11.003Search in Google Scholar PubMed
125. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A. CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004;75:1059–69.10.1086/426406Search in Google Scholar PubMed PubMed Central
126. Ando Y, Tateishi T, Sekido Y, Yamamoto T, Satoh T, Hasegawa Y, et al. Re: Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 1999;91:1587–90.10.1093/jnci/91.18.1587Search in Google Scholar PubMed
127. Miao J, Jin Y, Marunde RL, Gorski CJ, Kim S, Quinney S, et al. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics J 2009;9:319–26.10.1038/tpj.2009.21Search in Google Scholar PubMed PubMed Central
128. Floyd MD, Gervasini G, Masica AL, Mayo G, George AL Jr, Bhat K, et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 2003;13:595–606.10.1097/00008571-200310000-00003Search in Google Scholar PubMed
129. Reyes-Hernández OD, Lares-Asseff I, Sosa-Macias M, Vega L, Albores A, Elizondo G. A comparative study of CYP3A4 polymorphisms in Mexican Amerindian and Mestizo populations. Pharmacology 2008;81:97–103.10.1159/000109983Search in Google Scholar PubMed
130. Reyes-Hernandez OD, Arteaga-Illan G, Elizondo G. Detection of CYP3A4*1B and CYP3A4*2 polymorphisms by RFLP. Distribution frequencies in a Mexican population. Clin Genet 2004;66:166–8.Search in Google Scholar
131. Paris PL, Kupelian PA, Hall JM, Williams TL, Levin H, Klein EA, et al. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol Biomarkers Prev 1999;8:901–5.Search in Google Scholar
132. Hsieh KP, Lin YY, Cheng CL, Lai ML, Lin MS, Siest JP, et al. Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos 2001;29:268–73.Search in Google Scholar
133. CDI, 2005. Comisión Nacional para el desarrollo de los Pueblos Indígenas. Available at: http://www.cdi.gob.mx/localidades2005/index.html. Accessed May 2013.Search in Google Scholar
134. Smith LT. Decolonizing methodologies: research and indigenous people. Dunedin: University of Otago Press, 1999.Search in Google Scholar
©2013 by Walter de Gruyter Berlin Boston
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- New challenges for pharmacogenomics
- Reviews in Population Pharmacogenomics
- Cytochrome P450 genetic polymorphisms of Mexican indigenous populations
- Mini Review
- Recent examples on the clinical relevance of the CYP2D6 polymorphism and endogenous functionality of CYP2D6
- Original Articles
- Evaluation of partial area under the concentration time curve to estimate midazolam apparent oral clearance for cytochrome P450 3A phenotyping
- Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction
- A population pharmacokinetic model of remifentanil in pediatric patients using body-weight-dependent allometric exponents
- Unexpected interaction between CYP3A4 and BI 11634: is BI 11634 interacting with CYP3A4 similar to nifedipine?
- Short Communication
- Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney
Articles in the same Issue
- Masthead
- Masthead
- Editorial
- New challenges for pharmacogenomics
- Reviews in Population Pharmacogenomics
- Cytochrome P450 genetic polymorphisms of Mexican indigenous populations
- Mini Review
- Recent examples on the clinical relevance of the CYP2D6 polymorphism and endogenous functionality of CYP2D6
- Original Articles
- Evaluation of partial area under the concentration time curve to estimate midazolam apparent oral clearance for cytochrome P450 3A phenotyping
- Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction
- A population pharmacokinetic model of remifentanil in pediatric patients using body-weight-dependent allometric exponents
- Unexpected interaction between CYP3A4 and BI 11634: is BI 11634 interacting with CYP3A4 similar to nifedipine?
- Short Communication
- Caffeic acid inhibits organic anion transporters OAT1 and OAT3 in rat kidney