Startseite Lower bounds for complexity of Boolean circuits of finite depth with arbitrary elements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Lower bounds for complexity of Boolean circuits of finite depth with arbitrary elements

  • D. Yu. Cherukhin
Veröffentlicht/Copyright: 15. November 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Discrete Mathematics and Applications
Aus der Zeitschrift Band 21 Heft 4

Abstract

We consider circuits of functional elements of a finite depth whose elements are arbitrary Boolean functions of any number of arguments. We suggest a method of finding nonlinear lower bounds for complexity applicable, in particular, to the operator of cyclic convolution. The obtained lower bounds for the circuits of depth d ≥ 2 are of the form Ω(d–1(n)). In particular, for d = 2, 3, 4 they are of the form Ω(n3/2), Ω(n log n), and Ω(n log log n) respectively; for d ≥ 5 the function λd–1(n) is a slowly increasing function. These lower bounds are the greatest known ones for all even d and for d = 3. For d = 2, 3, these estimates have been obtained in earlier studies of the author.

Received: 2008-01-21
Published Online: 2011-11-15
Published in Print: 2011-November

© de Gruyter 2011

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma.2011.031/html
Button zum nach oben scrollen