Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Periodic properties of a simplest 2-linear shift register
-
O. A. Kozlitin
Veröffentlicht/Copyright:
27. Juni 2007
The state transition graph of a simplest self-controlled 2-linear shift register over Galois ring R = GR(2rn, 2n) is studied. An upper bound for the length of a cycle in this graph is obtained. In the case R = Z2n, states belonging to cycles of maximal length are described and the number of these states is evaluated.
Published Online: 2007-06-27
Published in Print: 2007-06-19
Copyright 2007, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Quadratic assignment problems with additively monotone matrices and incomplete anti-Monge matrices: conditions for effective solvability
- Periodic properties of a simplest 2-linear shift register
- Implications of a system of linear equations over a module
- Incompatible transformations of principal ideal rings
- On a method to set up a covert channel and estimation of its tolerance for interference
- An algorithmic approach to non-self-financing hedging in a discrete-time incomplete market
Artikel in diesem Heft
- Quadratic assignment problems with additively monotone matrices and incomplete anti-Monge matrices: conditions for effective solvability
- Periodic properties of a simplest 2-linear shift register
- Implications of a system of linear equations over a module
- Incompatible transformations of principal ideal rings
- On a method to set up a covert channel and estimation of its tolerance for interference
- An algorithmic approach to non-self-financing hedging in a discrete-time incomplete market