Startseite Large deviations of bisexual branching process in random environment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Large deviations of bisexual branching process in random environment

  • Aleksandr V. Shklyaev EMAIL logo
Veröffentlicht/Copyright: 15. Juli 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study large deviation probabilities for bisexual branching process in a random (i.i.d.) environment. Under several conditions on the mating function (which may depend on the environment) we introduce the associated random walk of the process. We also assume Cramer condition for the step of the walk and moment conditions on the number of descendants of one pair. Under Cramer condition for the steps of the walk and moment conditions on the number of descendants of a pair we find an exact asymptotics of probabilities P(ln Nn ∈ [x, x + Δn)) as n → ∞ for x/n varying in some domain for all sequences Δn, tending to zero sufficiently slowly. Similar results we obtain for bisexual branching process with immigration in a random environment.


Originally published in Diskretnaya Matematika (2023) 35, №3, 125–142 (in Russian).


Funding statement: The work was supported by the Russian Science Foundation under grant no. 19-11-00111-P, https://rscf.ru/project/19-11-00111/, and performed at Steklov Mathematical Institute of Russian Academy of Sciences.

References

[1] Daley D. J., “Extinction conditions for certain bisexual Galton –Watson branching processes”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 94 (1968), 315–322.10.1007/BF00531755Suche in Google Scholar

[2] Hull D. M., “A necessary condition for extinction in those bisexual Galton –Watson branching processes governed by superadditive mating functions”, J. Appl. Probab., 194 (1982), 847–850.10.1017/S0021900200023184Suche in Google Scholar

[3] Bruss F. T., “A note on extinction criteria for bisexual Galton –Watson processes”, J. Appl. Probab., 214 (1984), 915–919.10.1017/S0021900200037608Suche in Google Scholar

[4] Bagley J. H., “On the asymptotic properties of a supercritical bisexual branching process”, J. Appl. Probab., 233 (1986), 820–826.10.1017/S0021900200111969Suche in Google Scholar

[5] Gonzalez M., Molina M., “On the limit behaviour of a superadditive bisexual Galton –Watson branching process”, J. Appl. Probab., 334 (1996), 960–967.10.1017/S0021900200100397Suche in Google Scholar

[6] Gonzalez M., Molina M., Mota M., “A note on bisexual branching models with immigration”, J. Inter-American Stat. Inst., 49 (1999), 81–107.Suche in Google Scholar

[7] Gonzalez M., Molina M., Mota M., “On the limit behavior of a supercritical bisexual Galton –Watson branching process with immigration of mating units”, Stoch. Anal. Appl., 196 (2001), 933–943.10.1081/SAP-120000755Suche in Google Scholar

[8] Ma S., Xing Y., “Bisexual branching processes with immigration depending on the number of females and males”, Workshop on Branching Processes and Their Applications, Lect. Notes in Statist., 197 2010, 269–277.10.1007/978-3-642-11156-3_19Suche in Google Scholar

[9] Ma S., “Bisexual Galton –Watson branching processes in random environments”, Acta Math. Appl. Sin, Engl. Ser., 22 (2006), 419–428.10.1007/s10255-006-0317-4Suche in Google Scholar

[10] Ma S., Molina M., “Two-sex branching processes with offspring and mating in a random environment”, J. Appl. Probab., 464 (2009), 993–1004.10.1017/S0021900200006094Suche in Google Scholar

[11] Xiao S., Liu X., Li Y., “A. S. convergence rate and Lp-convergence of bisexual branching processes in a random environment and varying environment”, Acta Math. Appl. Sin, Engl. Ser., 39 (2023), 337–353.10.1007/s10255-023-1052-9Suche in Google Scholar

[12] Kozlov M. V., “On large deviations of branching processes in a random environment: a geometric distribution of the number of descendants”, Discrete Math. Appl., 162 (2006), 155–174.10.1163/156939206777344593Suche in Google Scholar

[13] Kozlov M. V., “On large deviations of strictly subcritical branching processes in a random environment with a geometric distribution of descendants”, Theory Probab. Appl., 543 (2010), 424–446.10.1137/S0040585X97984292Suche in Google Scholar

[14] Bansaye V., Berestycki J., Large deviations for branching processes in random environment, 2008, 28 pp., arXiv: 0810.4991Suche in Google Scholar

[15] Böinghoff C., Kersting G., “Upper large deviations of branching processes in a random environment — Offspring distributions with geometrically bounded tails”, Stoch. Proc. Appl., 12010 (2010), 2064–2077.10.1016/j.spa.2010.05.017Suche in Google Scholar

[16] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Inst. Math., 282 (2013), 15–34.10.1134/S0081543813060035Suche in Google Scholar

[17] Dmitruschenkov D. V., “On large deviations of a branching process in random environments with immigration at moments of extinction”, Discrete Math. Appl., 256 (2015), 339–343.10.1515/dma-2015-0032Suche in Google Scholar

[18] Dmitruschenkov D. V., Shklyaev A. V., “Large deviations of branching processes with immigration in a random environment”, Discrete Math. Appl., 276 (2017), 361–376.10.1515/dma-2017-0037Suche in Google Scholar

[19] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, Ann. Inst. H. Poincaré. Probab. Statist., 583 (2022), 1669–1700.10.1214/21-AIHP1223Suche in Google Scholar

[20] Shklyaev A. V., “Large deviations of branching process in a random environment. II”, Discrete Math. Appl., 316 (2021), 431–447.10.1515/dma-2021-0039Suche in Google Scholar

[21] Buraczewski D., Damek E., Mikosch T., Stochastic Models with Power-Law Tails: The Equation X = AX + B, Springer Series in Operations Research and Financial Engineering, 2016, 335 pp.10.1007/978-3-319-29679-1Suche in Google Scholar

[22] Shklyaev A. V., “Large deviations of a branching process in a random environment. I”, Discrete Math. Appl., 314 (2021), 281–291.10.1515/dma-2021-0025Suche in Google Scholar

[23] Vatutin V. A., Topchij V. A., “Maximum of the critical Galton –Watson processes and left-continuous random walks”, Theory Probab. Appl., 421 (1998), 17–27.10.1137/S0040585X97975903Suche in Google Scholar

[24] Dharmadhikari S.W., Fabian V., Jogdeo K., “Bounds on the moments of martingales”, Ann. Math. Statist., 395 (1968), 1719–1723.10.1214/aoms/1177698154Suche in Google Scholar

Received: 2023-06-05
Published Online: 2025-07-15
Published in Print: 2025-06-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2025-0013/html
Button zum nach oben scrollen