Startseite On continuants of continued fractions with rational partial quotients
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On continuants of continued fractions with rational partial quotients

  • Dmitry A. Dolgov EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Continued fractions with rational partial quotients with right shift arise in the process of applying Sorenson’s right-shift k-ary gcd algorithm to the ratio of natural numbers a, b. Using this algorithm makes it possible to obtain different types of such fractions. This functions are associated with special forms of continuants, that is, polynomials that can be used to express the numerators and denominators of the convergents. In this paper we introduce such fractions and continuants, we also investigate properties (in particular, the asymptotic behavior) of the extremal values of the continuants under constraints imposed on the variables involved in the right-shift k-ary gcd algorithm of Sorenson. We also introduce a construction similar to the triangle of coefficients of Fibonacci polynomials.


Originally published in Diskretnaya Matematika (2022) 34, №3, 34–51 (in Russian).


References

[1] Sorenson J., “The k-ary GCD algorithm”, Technical Report CS-TR-90-979, University of Wisconsin, Madison, 1990, 18 pp.Suche in Google Scholar

[2] Thue A., “Et par antydninger ti1 en taltheoretisk metode”, Kra. Vidensk. Selsk. Forh, 7 (1902), 57–75.Suche in Google Scholar

[3] Aubry L., “Un théoréme d’arithmétique”, Mathesis, 4:3 (1913)Suche in Google Scholar

[4] Vinogradov I. M., “On a general theorem concerning the distribution of the residues and non-residues of powers”, Trans. Amer. Math. Soc., 29 (1927), 209–217.10.1090/S0002-9947-1927-1501384-3Suche in Google Scholar

[5] Sloan N. J. A., “Fibonacci polynomials”, The On-Line Encyclopedia of Integer Sequences, https://oeis.org/wiki/Fibonacci_polynomials.Suche in Google Scholar

[6] Muir T., A Treatise on the Theory of Determinants, Dover Publ., New York, 1960, 766 pp.Suche in Google Scholar

[7] Gel’fond A. O., Calculus of Finite Differences, Hindustan Publ. Comp., 1971, 451 pp.Suche in Google Scholar

[8] Lando S. K., Lectures on Generating Functions, M.: MCCME, 2007 (in Russian), 144 pp.Suche in Google Scholar

Received: 2022-02-23
Published Online: 2024-12-10
Published in Print: 2024-12-15

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2024-0028/pdf?lang=de
Button zum nach oben scrollen