Startseite Criteria for maximal nonlinearity of a function over a finite field
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Criteria for maximal nonlinearity of a function over a finite field

  • Vladimir V. Ryabov EMAIL logo
Veröffentlicht/Copyright: 11. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An n-place function over a field with q elements is called maximally nonlinear if it has the greatest nonlinearity among all such functions. Criteria and necessary conditions for maximal nonlinearity are obtained, which imply that, for even n, the maximally nonlinear functions are bent functions, but, for q > 2, the known families of bent functions are not maximally nonlinear. For an arbitrary finite field, a relationship between the Hamming distances from a function to all affine mappings and the Fourier spectra of the nontrivial characters of the function are found.


NP “GST”

References

[1] Ambrosimov A. S., “Properties of bent functions of q-valued logic over finite fields”, Discrete Math. Appl 4:4 (1994), 341-35010.1515/dma.1994.4.4.341Suche in Google Scholar

[2] Kuz'min A. S., Nechaev A. A., Shishkin V. A., “Bent and hyper-bent functions over the finite field”, Tr. Diskr. Mat., 10, Fizmatlit, Moscow, 2007, 97-122 (in Russian)Suche in Google Scholar

[3] Ryabov V. G., “On the degree of restrictions of q-valued logic vector functions to linear manifolds”, Discrete Math. Appl 31:2 (2021), 127-13410.1515/dma-2021-0011Suche in Google Scholar

[4] Ryabov V. G., “Approximation of restrictions of q-valued logic functions to linear manifolds by affine analogues”, Discrete Math. Appl 31:6 (2021), 409-41910.1515/dma-2021-0037Suche in Google Scholar

[5] Ryabov V. G., “Maximally nonlinear functions over finite fields”, Discrete Math. Appl 33:1 (2023), 41-5310.1515/dma-2023-0005Suche in Google Scholar

[6] Solodovnikov V. I., “Bent functions from a finite Abelian group into a finite Abelian group”, Discrete Math. Appl 12:2 (2002), 111-12610.1515/dma-2002-0203Suche in Google Scholar

[7] Solodovnikov V. I., “On primary functions which are minimally close to linear functions”, Mat. Vopr. Kriptogr 2:4 (2011), 97-108 (in Russian)Suche in Google Scholar

[8] Carlet C., Ding C., “Highly nonlinear mappings”, J. Complexity 20:2-3 (2004), 205-24410.1016/j.jco.2003.08.008Suche in Google Scholar

[9] Kumar P. V., Scholtz R. A.,Welch L. R, “Generalized bent functions and their properties”, J. Comb. Theory, Ser. A 40:1 (1985), 90-10710.1016/0097-3165(85)90049-4Suche in Google Scholar

[10] Rothaus O. S., “On "bent" functions”, J. Comb. Theory, Ser. A 20:3 (1976), 300-30510.1016/0097-3165(76)90024-8Suche in Google Scholar

Received: 2022-04-18
Published Online: 2023-04-11
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2023-0012/pdf?lang=de
Button zum nach oben scrollen