Startseite Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic local probabilities of large deviations for branching process in random environment with geometric distribution of descendants

  • Konstantin Yu. Denisov EMAIL logo
Veröffentlicht/Copyright: 11. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the branching process Zn=Xn,1++XnZn1 , in random environmentsη, where η is a sequence of independent identically distributedvariables, for fixed η the random variables Xi, j areindependent, have the geometric distribution. We suppose that the associated random walk Sn=ξ1++ξn has positive meanμ,0 < h<h+satisfies the right-hand Cramer’s condition Eexp(hξi) < ∞ for, some h+. Under theseassumptions, we find the asymptotic representation for local probabilities P(Zn=⌊exp(θ n)⌋) for θ ∈ [θ1, θ2]⊂</givennames><x> </x><surname>(μ;μ+) and someμ+.


Note

Originally published in Diskretnaya Matematika (2021) 33, №4, 19–31 (in Russian).


Acknowledgment

The author is obliged to A. V. Shklyaev for constant attention and useful discussions, and also to anonimous reviewers for remarks which helps to improve the paper.

References

[1] Kozlov M.V., “On large deviations of branching processes in a random environment: geometric distribution of descendants”, Discrete Math. Appl 16:2 (2006), 155–17410.1515/156939206777344593Suche in Google Scholar

[2] Kozlov M. V., “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl 54:3 (2010), 424–44610.1137/S0040585X97984292Suche in Google Scholar

[3] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Related Fields 15:3 (2009), 493–524Suche in Google Scholar

[4] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, 2017, arXiv: 1706.03874Suche in Google Scholar

[5] Shklyaev A. V., “Large deviations of branching process in a random environment. II”, DiscreteMath. Appl 31:6 (2021), 431– 44710.1515/dma-2021-0039Suche in Google Scholar

[6] Borovkov A.A., Asymptotic analysis of random walks. Rapidly decreasing distributions of increments Fizmatlit, 2013 (in Russian), 447 ppSuche in Google Scholar

[7] Petrov V. V., “On the probabilities of large deviations for sums of independent random variables”, Theory Probab. Appl 10:2 (1965), 287–29810.1137/1110033Suche in Google Scholar

[8] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob 12:1 (1975), 39–4610.2307/3212405Suche in Google Scholar

[9] Denisov K. Yu., “Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants”, Discrete Math. Appl 32:5 (2022), 313–32310.1515/dma-2022-0026Suche in Google Scholar

Received: 2021-04-20
Published Online: 2023-04-11
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2023-0008/pdf?lang=de
Button zum nach oben scrollen