Startseite Some classes of easily testable circuits in the Zhegalkin basis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some classes of easily testable circuits in the Zhegalkin basis

  • Yulia V. Borodina EMAIL logo
Veröffentlicht/Copyright: 24. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We identify the classes of Boolean functions that may be implemented by easily testable circuits in the Zhegalkin basis for constant type-1 faults on outputs of gates. An upper estimate for the length of a complete fault detection test for three-place functions is obtained.

References

[1] Lupanov O. B., Asymptotic estimates of the complexity of control systems, Moscow State Univ., Moscow, 1984 (in Russian).Suche in Google Scholar

[2] Yablonsky S. V., Introduction to Discrete Mathematics, Vysshaya Shkola, Moscow, 2002 (in Russian).Suche in Google Scholar

[3] Yablonskii S. V., “Some questions of reliability and checking of control systems”, Mathematical Problems of Cybernetics, 1 (1988), 5–25 (in Russian).Suche in Google Scholar

[4] Redkin N. P., Reliability and Diagnosis of Circuits, Moscow State Univ. Press, Moscow, 1992 (in Russian).Suche in Google Scholar

[5] Borodina Yu. V., Borodin P. A., “Synthesis of easily testable circuits over the Zhegalkin basis in the case of constant faults of type 0 at outputs of elements”, Discrete Math. Appl., 20:4 (2010), 441–449.10.1515/dma.2010.027Suche in Google Scholar

[6] Borodina Yu. V., “Easily testable circuits in Zhegalkin basis in the case of constant faults of type “1” at gate outputs”, Discrete Math. Appl., 30:5 (2020), 303–306.10.1515/dma-2020-0026Suche in Google Scholar

[7] Romanov D. S., “A method of synthesis of irredundant circuits in the Zhegalkin basis admitting single fault diagnostic test sets with cardinality 1”, Izv. VUZov. Povolzhskiy region. Fiziko-matematicheskie nauki, 4 (36) (2015), 38–54.Suche in Google Scholar

[8] Romanov D. S., Romanova E. Yu., “A method of synthesis of irredundant circuits admitting single fault detection tests of constant length”, Discrete Math. Appl., 29:1 (2019), 35–48.10.1515/dma-2019-0005Suche in Google Scholar

[9] Popkov K.A., “A method for constructing logic networks allowing short single diagnostic tests”, Prikl. Diskr. Matem., 46 (2019), 38–57 (in Russian).10.17223/20710410/46/4Suche in Google Scholar

Received: 2021-08-17
Published Online: 2023-02-24
Published in Print: 2023-02-23

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2023-0001/pdf?lang=de
Button zum nach oben scrollen