Home On the “tree” structure of natural numbers
Article
Licensed
Unlicensed Requires Authentication

On the “tree” structure of natural numbers

  • Vitalii V. Iudelevich EMAIL logo
Published/Copyright: October 12, 2022

Abstract

With each positive integer one can naturally associate a graph in the form of a tree. This paper is concerned with the average values of the number of edges, the number of leaves and the height of trees corresponding to positive integers not greater than a given boundary.


Note

Originally published in Diskretnaya Matematika (2021) 33,№3, 121–141 (in Russian).


References

[1] Trappman H., Robbins A., “Tetration Reference”, 2008, 63, math.eretrandre.org.Search in Google Scholar

[2] Karatsuba A. A., Basic Analytic Number Theory, Springer-Verlag, Berlin-Heidelberg, 1993, XIII, 222 pp.10.1007/978-3-642-58018-5Search in Google Scholar

[3] Changa M. E., Methods of analytic number theory, Moscow-Izhevsk: «R&C Dynamics», 2013 (in Russian), 226 pp.Search in Google Scholar

[4] Prachar K., Primzahlverteilung, Springer-Verlag, Berlin Góttingen Heidelberg, 1957.Search in Google Scholar

[5] Shubin A. V., “Asymptotic behavior of functions Ω(k; n) and ω(k; n) related to the number of prime divisors”, Discrete Math. Appl., 29:2 (2019), 121–129.10.1515/dma-2019-0011Search in Google Scholar

[6] Naslund E., “The median largest prime factor”, J. Number Theory, 141 (2014), 109–118.10.1016/j.jnt.2013.12.018Search in Google Scholar

[7] Ramachandra K., “Some remarks on the mean value of the Riemann zeta function and other Dirichlet series, III”, Ann. Acad. Sci. Fenn., AI Math., 5 (1980), 145–158.10.5186/aasfm.1980.0522Search in Google Scholar

[8] Ram Murty M., Problems in Analytic Number Theory, II, New York, Springer-Verlag, 2008, 506 pp.Search in Google Scholar

Received: 2021-06-11
Published Online: 2022-10-12
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0027/html?lang=en
Scroll to top button