Startseite On some invariants under the action of an extension of GA(n, 2) on the set of Boolean functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On some invariants under the action of an extension of GA(n, 2) on the set of Boolean functions

  • Oleg A. Logachev EMAIL logo , Sergey N. Fedorov und Valerii V. Yashchenko
Veröffentlicht/Copyright: 15. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let G be the extension of a general affine group by the group of affine functions. We study the action of G on the set of Boolean functions. The action consists in nondegenerate affine transformations of variables and addition of affine Boolean functions. We introduce and examine some parameters of Boolean functions which are invariant with respect to the action of G. These are the amplitude (which is closely related to the nonlinearity), the dimension of a function, and some others. The invariants, together with some additionally proposed notions, could be used to obtain new bounds on cryptographic parameters of Boolean functions, including the maximum nonlinearity of functions in an odd number of variables.


Note: Originally published in Diskretnaya Matematika (2021) 33,№2, 66–85 (in Russian).


References

[1] Cheremushkin A. V., Decomposition and Classification of Discrete Functions, KURS, Moscow, 2018 (in Russian), 288 pp.Suche in Google Scholar

[2] Logachev O. A., Saľnikov A. A., Smyshlyaev S. V., Yashchenko V. V., Boolean functions in coding theory and cryptology, LENAND, Moscow, 2015 (in Russian), 576 pp.Suche in Google Scholar

[3] Logachev O. A., Fedorov S. N., Yashchenko V. V., “Boolean functions as points on the hypersphere in the Euclidean space”, Discrete Math. Appl, 29:2 (2019), 89–101.10.1515/dma-2019-0009Suche in Google Scholar

[4] Lechner R., “Harmonic analysis of switching functions”, Recent Developments in Switching Theory, ed. A. Mukhopadhyay, Acad. Press, New York, 1971,121–228.10.1016/B978-0-12-509850-2.50010-5Suche in Google Scholar

[5] Wu Ch.-K., Dawson E., “Construction of correlation immune Boolean functions”, Australasian J. Combinatorics, 21 (1997), 141–166.Suche in Google Scholar

[6] Gopalan P., O’Donnell R., Servedio R. A., Shpilka A., Wimmer K., “Testing Fourier dimensionality and sparsity”, ICALP 2009, Lect. Notes Comput. Sci., 5555, 2009, 500–512.10.1007/978-3-642-02927-1_42Suche in Google Scholar

[7] Carlet C., Charpin P., “Cubic Boolean functions with highest resiliency”, IEEE Trans. Inf. Theory, 512 (2005), 562–571.10.1109/ISIT.2004.1365535Suche in Google Scholar

[8] Tarannikov Yu. V., “On the values of the affine rank of the spectrum support of plateau functions”, Matematika i bezopasnost’ informatsionnykh tekhnologiy: Mater. konf. v MGU28-29 oktyabrya 2004 g., MCCME, Moscow, 2005,226–231 (in Russian).Suche in Google Scholar

[9] Logachev O. A., Saľnikov A. A., Yashchenko V. V., “Nondegenerate normal forms of Boolean functions”, Dokl. Math., 62:1 (2000), 35–38.Suche in Google Scholar

[10] Yashchenko V. V., “On the spread criterion for Boolean functions and on bent functions”, Problemy peredachi informatsii, 33 1 (1997), 75–86 (in Russian).Suche in Google Scholar

[11] Kavut S., Yucel M. D., “Generalized rotation symmetric and dihedral symmetric Boolean functions – 9 variable Boolean functions with nonlinearity 242”, AAECC–17, Lect. Notes Comput. Sci., 4851,2007,321–329.10.1007/978-3-540-77224-8_37Suche in Google Scholar

[12] Maitra S., Balanced Boolean function on 13-variables having nonlinearity strictly greater than the bent concatenation bound, IACReprint archive, 2007, http://eprint.iacr.org/2007/309.pdf.Suche in Google Scholar

[13] Patterson N. J., Wiedemann D. H., “The covering radius of the (215,16) Reed–Muller code is at least 16276”, IEEE Trans. Inf. Theory, IT-29 3 (1983), 354–356.10.1109/TIT.1983.1056679Suche in Google Scholar

[14] Kavut S., Boolean functions with excellent cryptographic properties in autocorrelation and Walsh spectra, Ph. D. thesis, Dept of Electrical and Electronics Engineering, Middle East Techn. Univ., 2008,78 pp.Suche in Google Scholar

Received: 2021-04-09
Published Online: 2022-06-15
Published in Print: 2022-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0016/html?lang=de
Button zum nach oben scrollen