Startseite Admissible and Bayes decisions with fuzzy-valued losses
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Admissible and Bayes decisions with fuzzy-valued losses

  • Alexey S. Shvedov EMAIL logo
Veröffentlicht/Copyright: 13. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Some results of classical statistical decision theory are generalized by means of the theory of fuzzy sets. The concepts of an admissible decision in the restricted sense, an admissible decision in the broad sense, a Bayes decision in the restricted sense, and a Bayes decision in the broad sense are introduced. It is proved that any Bayes decision in the broad sense with positive prior discrete density is admissible in the restricted sense. The class of Bayes decisions is shown to be complete under certain conditions on the loss function. Problems with a finite set of possible states are considered.


Originally published in Diskretnaya Matematika (2021) 33, №2, 166–174 (in Russian).


References

[1] Blackwell D.A., Girshick M. A., Theory of Games and Statistical Decisions, Wiley Publications in Statistics. New York, J. Wiley & Sons, London, Chapman & Hall, 1954, xi+355 pp.Suche in Google Scholar

[2] Wald A., “Statistical decision functions”, Ann. Math. Statist., 20:2 (1949), 165-205.10.1007/978-1-4612-0919-5_22Suche in Google Scholar

[3] Rockafellar R.T., Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970, xviii + 451 pp.10.1515/9781400873173Suche in Google Scholar

[4] Shvedov A.S., Probability Theory and Mathematical Statistics: Intermediate Level, M.: Izd. dom Vysshey shkoly ekonomiki, 2016 (in Russian), 280 pp.10.12737/18865Suche in Google Scholar

[5] Shvedov A.S., “Estimation of means and covariances of fuzzy random variables”, Prikladnaya ekonometrika, 42 (2016), 121138 (in Russian).Suche in Google Scholar

[6] Shvedov A.S., “Fuzzy mathematical programming: a brief review”, Problemy upravleniya, 2017, №3, 2-10.Suche in Google Scholar

[7] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland Publ. Comp., Amsterdam, Oxford, 1976, 399 pp.Suche in Google Scholar

[8] Berger J.O., Statistical Decision Theory and Bayesian Analysis, 2nd ed., N.Y.: Springer, 2010, 617 pp.Suche in Google Scholar

[9] Freeling A.N.S., “Fuzzy sets and decision analysis”, IEEE Trans. Systems Man Cybernet., 10:7 (1980), 341-354.10.1109/TSMC.1980.4308515Suche in Google Scholar

[10] Gil M.A., López-Díaz M., “Fundamentals and Bayesian analysis of decision problems with fuzzy-valued utilities”, Int. J. Approx. Reasoning, 15 (1996), 203-224.10.1016/S0888-613X(96)00073-4Suche in Google Scholar

[11] Hryniewicz O., “Bayes statistical decisions with random fuzzy data - an application in reliability”, Reliab. Engineer. & System Safety, 151 (2016), 20-33.10.1016/j.ress.2015.08.011Suche in Google Scholar

[12] Hryniewicz O., Kaczmarek K., Nowak P., “Bayes statistical decisions with random fuzzy data - an application for the Weibull distribution”, Eksploatacja I Niezawodnosc - Maintenance and Reliability, 17:4 (2015), 610-616.10.17531/ein.2015.4.18Suche in Google Scholar

[13] Jain R., “Decision making in the presence of fuzzy variables”, IEEE Trans. Systems Man Cybernet., 6 (1976), 698-703.10.1109/TSMC.1976.4309421Suche in Google Scholar

[14] Kahraman C., Kabak Ö., Fuzzy statistical decision making, Switzerland: Springer, 2016,356 pp.10.1007/978-3-319-39014-7Suche in Google Scholar

[15] Lehmann E.L., Casella G., Theory of point estimation, N.Y.: Springer, 1997,589 pp.Suche in Google Scholar

[16] López-DíazM., GilM.A., “Reversing the order of integration in iterated expectations of fuzzy random variables, and statistical applications”, J. Statist. Plan. Infer., 74 (1998), 11-29.10.1016/S0378-3758(98)00100-1Suche in Google Scholar

[17] Pratt J.W., Raiffa H., Schlaifer R., Introduction to Statistical Decision Theory, Cambridge (Mass.): The MIT Press, 1995,875 pp.Suche in Google Scholar

[18] Robert C.P., The Bayesian Choice: from Decision-Theoretic Foundations to Computational Implementation, 2nd ed., N.Y.: Springer, 2007, 602 pp.Suche in Google Scholar

[19] Rukhin A.L., “Admissibility: Survey of a concept in progress”, Int. Stat. Review, 63:1 (1995), 95-115.10.2307/1403779Suche in Google Scholar

[20] Tong R.M., Bonissone P.P., “A linguistic approach to decision making with fuzzy sets”, IEEE Trans. Systems Man Cybernet., 10:11 (1980), 716723.10.1109/TSMC.1980.4308391Suche in Google Scholar

[21] Viertl R., Statistical Methods for Fuzzy Data, Chichester: Wiley, 2011,256 pp.10.1002/9780470974414Suche in Google Scholar

[22] Watson S.R., Weiss J.J., Donnell M.L., “Fuzzy decision analysis”, IEEE Trans. Systems Man Cybernet., 9:1 (1979), 1-9.10.1109/TSMC.1979.4310067Suche in Google Scholar

[23] Whalen T., “Decision making under uncertainty with various assumptions about available information”, IEEE Trans. Systems Man Cybernet., 14:6 (1984), 888-900.10.1016/B978-1-4832-1450-4.50081-XSuche in Google Scholar

[24] Zadeh L.A., “Fuzzy sets”, Information and Control, 8 (1965), 338-353.10.21236/AD0608981Suche in Google Scholar

[25] Zhen Z., Runtong Z., Yan P., Yihong R., Jie W., “Fuzzy valuation-based system for Bayesian decision problems”, J. ofIntell. & Fuzzy Systems, 30 (2016), 2319-2329.10.3233/IFS-152002Suche in Google Scholar

Received: 2018-06-30
Revised: 2021-04-10
Published Online: 2022-04-13
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0013/html?lang=de
Button zum nach oben scrollen