Startseite Generalized de Bruijn graphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized de Bruijn graphs

  • Fedor M. Malyshev EMAIL logo
Veröffentlicht/Copyright: 17. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the graphs of transitions between states of nonautonomous automata that provide, with independent equiprobable input signs, an equiprobable distribution on the set of all states in the minimum possible number of cycles, as is the case of the de Bruijn graphs corresponding to shift registers. It is proved that in the case of a binary input alphabet, there are at least 12r−33 pairwise nonisomorphic directed graphs with 2r vertices that have this property. All graphs of this type with 8 and 9 vertices are found.


Note: Originally published in Diskretnaya Matematika (2020) 32,№4, 52–88 (in Russian).


References

[1] De Bruijn N. G., “A combinatorial problem”, Proc. Sect. Sci. Koninkl. Nederl. Akad. Wetensch. Amsterdam, 49:7 (1946), 758-764.Suche in Google Scholar

[2] Hall M., Combinatorial theory, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967, x+310 pp.Suche in Google Scholar

[3] Good I. J., “Normal recurring decimals”, J. London Math. Soc., 21:3 (1946), 167-169.10.1112/jlms/s1-21.3.167Suche in Google Scholar

[4] Fredricksen H., “A survey of full length nonlinear shift register cycle algorithms”, SIAM Rev., 24:2 (1982), 195-221.10.1137/1024041Suche in Google Scholar

[5] Kratko M. I., Strok V. V., “De Bruijn sequences with constraints”, Voprosy kibernetiki. Kombinatornyy analiz i teoriya grafov, 1980, 80-84 (in Russian).Suche in Google Scholar

[6] Sherisheva E. V., “On the number of finite automata stabilized at a fixed state by a constant input”, Discrete Math. Appl., 4:5 (1994), 473-478.10.1515/dma.1994.4.5.473Suche in Google Scholar

[7] Erokhin A. V., Malyshev F. M., Trishin A. E., “Multidimensional linear method and diffusion characteristics of linear medium of ciphering transform”, Mat. Vopr. Kriptogr., 8:4 (2017), 29-62 (in Russian).10.4213/mvk235Suche in Google Scholar

[8] Harary F., Graph Theory, Addison-Wesley, 1969, 274 pp.10.21236/AD0705364Suche in Google Scholar

[9] Fisher P., Aljohani N., Baek J., “Generation of finite inductive, pseudo random, binary sequences”, J. Inf. Process. Syst., 13:6 (2017), 1554-1574.Suche in Google Scholar

[10] Wu J., Jia R., Li Q., “g-circulant solutions to the (0, 1)-matrix equation Am = Jn”, Linear Algebra Appl., 345:1 (2002), 195-224.10.1016/S0024-3795(01)00491-8Suche in Google Scholar

[11] Hoffman A. J., “Research problem 2-11”, J. Combin. Theory, 2:3 (1967), 393.10.1016/S0021-9800(67)80037-1Suche in Google Scholar

[12] Trefois M., Van Dooren P., Delvenne J.-Ch., “Binary factorizations of the matrix of all ones”, Linear Alg. Appl., 468 (2015), 63-79.10.1016/j.laa.2014.01.011Suche in Google Scholar

[13] Ma S. L., Waterhouse W. C., “The g-circulant solutions of Am = λj”, Linear Algebra Appl., 85 (1987), 211-220.10.1016/0024-3795(87)90218-7Suche in Google Scholar

[14] King F., Wang K., “On the g-circulant solutions to the matrix equation Am = λj”, J. Combin. Theory. Ser. A, 38:2 (1985), 182-186.10.1016/0097-3165(85)90067-6Suche in Google Scholar

[15] Wang K., “On the g-circulant solutions to the matrix equation Am = λj”, J. Combin. Theory. Ser. A, 33:3 (1982), 287-296.10.1016/0097-3165(82)90041-3Suche in Google Scholar

[16] Wang T., Wang J., “On some solutions to the matrix equation Am = j”, J. Dalian Univ. Technology, 10:6 (1990), 621-624.Suche in Google Scholar

[17] Du D. Z., Hwang F. K., “Generalized de Bruijn digraphs”, Networks, 18:1 (1988), 27-38.10.1002/net.3230180105Suche in Google Scholar

[18] Esfahanian A. H., Hakimi S. L., “Faul-tolerant routing in de Bruin communication networks”, IEEE Trans. Comput., C-34:9 (1985), 777-788.10.1109/TC.1985.1676633Suche in Google Scholar

[19] Pradhan D. K., “Fault-tolerant multiprocessor and VSLI-based systems communication architecture”, Fault Tolerant Computing Theory and Techniques, II, Prentice-Hall, Englewood Cliffs, NJ, 1986, 467-576.10.21236/ADA183344Suche in Google Scholar

[20] Grodzki Z., Wronski A., “Generalized de Bruijn multigraphs of rank k ”, Ars Combinatoria, 50 (1998), 161-176.Suche in Google Scholar

[21] Malyshev F. M., Tarakanov V. E., “Generalized de Bruijn graphs”, Math. Notes, 62:4 (1997), 449-456.10.1007/BF02358978Suche in Google Scholar

[22] Tarakanov V. E., “On the automorphism groups of generalized de Bruijn graphs”, Tr. Diskr. Mat., 5, M.: FIZMATLIT, 235-240 (in Russian).Suche in Google Scholar

[23] Malyshev F. M., “Infinite series of simple generalized de Bruijn graphs”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya (Mater. XV Mezhdunar. konf., Tula, TGPU im. L. N. Tolstogo), 2018, 187-190 (in Russian).Suche in Google Scholar

Received: 2020-06-30
Published Online: 2022-02-17
Published in Print: 2022-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2022-0002/pdf?lang=de
Button zum nach oben scrollen