Startseite Approximation of restrictions of q-valued logic functions to linear manifolds by affine analogues
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Approximation of restrictions of q-valued logic functions to linear manifolds by affine analogues

  • Vladimir G. Ryabov EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For a finite q-element field Fq, we established a relation between parameters characterizing the measure of affine approximation of a q-valued logic function and similar parameters for its restrictions to linear manifolds. For q > 2, an analogue of the Parseval identity with respect to these parameters is proved, which implies the meaningful upper estimates qn−1(q − 1) − qn/2−1 and qr−1(q − 1) − qr/2−1, for the nonlinearity of an n-place q-valued logic function and of its restrictions to manifolds of dimension r. Estimates characterizing the distribution of nonlinearity on manifolds of fixed dimension are obtained.


Note: Originally published in Diskretnaya Matematika (2020) 32,№4, 89–102 (in Russian).



Dedicated to the memory of Mikhail Mikhailovich Glukhov.


References

[1] Ambrosimov A. S., “Approximation of fc-ary functions by functions from the given system”, Fundam. Prikl. Mat., 3:3 (1997), 653–674 (in Russian).Suche in Google Scholar

[2] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Mat. Vopr. Kriptogr., 7:4 (2016), 29–50 (in Russian).10.4213/mvk202Suche in Google Scholar

[3] Zubkov A. M., Serov A. A., “Bounds for the number of Boolean functions admitting affine approximations of a given accuracy”, Discrete Math. Appl., 20:5-6 (2010), 467–486.10.1515/dma.2010.029Suche in Google Scholar

[4] Ryabov V. G., “On the degree of restrictions of q-valued logic functions to linear manifolds”, Prikl. Diskr. Mat., 2019, №45, 13–25 (in Russian).10.17223/20710410/45/2Suche in Google Scholar

[5] Ryabov V. G., “On the degree of restrictions of q-valued logic vector functions to linear manifolds”, Discrete Math. Appl., 31:2 (2021), 127–134.10.1515/dma-2021-0011Suche in Google Scholar

[6] Cheremushkin A. V., Decomposition and classification of discrete functions, KURS, Moscow, 2018 (in Russian), 288 pp.Suche in Google Scholar

[7] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Inf. Theory, 5:5 (May 1959), 176–186.10.1142/9789814632010_0008Suche in Google Scholar

[8] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305.10.1016/0097-3165(76)90024-8Suche in Google Scholar

[9] Tokareva N. N., Bent Functions, Elsevier, Academic Press, 2015, 220 pp.10.1016/B978-0-12-802318-1.00002-9Suche in Google Scholar

Received: 2020-09-14
Published Online: 2021-12-04
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2021-0037/html?lang=de
Button zum nach oben scrollen